Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space
Aghavard Kh. Khachatryan; Khachatur A. Khachatryan
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 89-100
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topKhachatryan, Aghavard Kh., and Khachatryan, Khachatur A.. "Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 89-100. <http://eudml.org/doc/260587>.
@article{Khachatryan2013,
abstract = {The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space $L_1(0,+\infty )\cap L_\{\infty \}(0,+\infty )$. This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.},
author = {Khachatryan, Aghavard Kh., Khachatryan, Khachatur A.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Wiener–Hopf operator; Hammerstein–Nemytskii equation; Caratheodory condition; one-parameter family of positive solutions; iteration; monotonic increasing and bounded solution; Wiener-Hopf operator; Hammerstein-Nemytskii equation; nonlinear integral equations; noncompact integral operator},
language = {eng},
number = {1},
pages = {89-100},
publisher = {Palacký University Olomouc},
title = {Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_\{\infty \}(0,+\infty )$},
url = {http://eudml.org/doc/260587},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Khachatryan, Aghavard Kh.
AU - Khachatryan, Khachatur A.
TI - Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 89
EP - 100
AB - The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$. This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.
LA - eng
KW - Wiener–Hopf operator; Hammerstein–Nemytskii equation; Caratheodory condition; one-parameter family of positive solutions; iteration; monotonic increasing and bounded solution; Wiener-Hopf operator; Hammerstein-Nemytskii equation; nonlinear integral equations; noncompact integral operator
UR - http://eudml.org/doc/260587
ER -
References
top- Arabadjyan, L. G., Yengibaryan, N. B., Convolution equations and nonlinear functional equations, Itogi nauki i teckniki, Math. Analysis 4 (1984), 175–242 (in Russian). (1984) MR0780564
- Gokhberg, I. Ts., Feldman, I. A., Convolution Equations and Proections Methods of Solutions, Nauka, Moscow, 1971. (1971) MR0355674
- Khachatryan, A. Kh., Khachatryan, Kh. A., 10.7494/OpMath.2011.31.3.393, Opuscula, Mathematica 31, 3 (2011), 393–398. (2011) Zbl1228.45007MR2802902DOI10.7494/OpMath.2011.31.3.393
- Khachatryan, A. Kh., Khachatryan, Kh. A., On solvability of a nonlinear problem in theory of income distribution, Eurasian Math. Jounal 2 (2011), 75–88. (2011) Zbl1258.45004MR2910832
- Khachatryan, Kh. A., On one class of nonlinear integral equations with noncompact operator, J. Contemporary Math. Analysis 46, 2 (2011), 71–86. (2011) MR2828824
- Khachatryan, Kh. A., Some classes of Urysohn nonlinear integral equations on half line, Docl. NAS Belarus 55, 1 (2011), 5–9. (2011) MR2932258
- Kolmogorov, A. N., Fomin, V. C., Elements of Functions Theory and Functional Analysis, Nauka, Moscow, 1981 (in Russian). (1981)
- Lindley, D. V., The theory of queue with a single sever, Proc. Cambridge Phil. Soc. 48 (1952), 277–289. (1952) MR0046597
- Milojevic, P. S., A global description of solution to nonlinear perturbations of the Wiener–Hopf integral equations, El. Journal of Differential Equations 51 (2006), 1–14. (2006) MR2226924
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.