Remarks on star countable discrete closed spaces
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 451-460
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSong, Yan-Kui. "Remarks on star countable discrete closed spaces." Czechoslovak Mathematical Journal 63.2 (2013): 451-460. <http://eudml.org/doc/260594>.
@article{Song2013,
abstract = {In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming $2^\{\aleph _0\}=2^\{\aleph _1\}$, there exists a normal absolutely star countable discrete closed space having a regular-closed subspace which is not star countable.},
author = {Song, Yan-Kui},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudocompact; normal; Tychonoff; star countable; absolutely star countable; star countable discrete closed; absolutely star countable discrete closed space; pseudocompact; normal; Tychonoff; star countable; absolutely star countable; star countable discrete closed; absolutely star countable discrete closed space},
language = {eng},
number = {2},
pages = {451-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on star countable discrete closed spaces},
url = {http://eudml.org/doc/260594},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Song, Yan-Kui
TI - Remarks on star countable discrete closed spaces
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 451
EP - 460
AB - In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming $2^{\aleph _0}=2^{\aleph _1}$, there exists a normal absolutely star countable discrete closed space having a regular-closed subspace which is not star countable.
LA - eng
KW - pseudocompact; normal; Tychonoff; star countable; absolutely star countable; star countable discrete closed; absolutely star countable discrete closed space; pseudocompact; normal; Tychonoff; star countable; absolutely star countable; star countable discrete closed; absolutely star countable discrete closed space
UR - http://eudml.org/doc/260594
ER -
References
top- Aiken, L. P., 10.1016/j.topol.2011.06.032, Topology Appl. 158 (2011), 1732-1737. (2011) Zbl1223.54029MR2812483DOI10.1016/j.topol.2011.06.032
- Alas, O. T., Junqueira, L. R., Wilson, R. G., 10.1016/j.topol.2010.12.012, Topology Appl. 158 (2011), 620-626. (2011) Zbl1226.54023MR2765618DOI10.1016/j.topol.2010.12.012
- Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G., 10.2478/s11533-011-0018-y, Cent. Eur. J. Math. 9 (2011), 603-615. (2011) MR2784032DOI10.2478/s11533-011-0018-y
- Bonanzinga, M., Star-Lindelöf and absolutely star-Lindelöf spaces, Questions Answers Gen. Topology. 16 (1998), 79-104. (1998) Zbl0931.54019MR1642032
- Engelking, R., General Topology. Rev. and compl. ed, Sigma Series in Pure Mathematics 6, Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Matveev, M. V., 10.1016/0166-8641(94)90074-4, Topology Appl. 58 (1994), 81-92. (1994) Zbl0801.54021MR1280711DOI10.1016/0166-8641(94)90074-4
- Matveev, M. V., A survey on star-covering properties, Topological Atlas preprint No 330 (1998). (1998)
- Matveev, M. V., On space in countable web, arxiv:math/0006199v1 (2000). (2000)
- Song, Y.-K., 10.21099/tkbjm/1496164294, Tsukuba J. Math. 25 (2001), 371-382. (2001) Zbl1011.54020MR1869769DOI10.21099/tkbjm/1496164294
- Song, Y.-K., Closed subsets of absolutely star-Lindelöf spaces II, Commentat. Math. Univ. Carol. 44 (2003), 329-334. (2003) Zbl1100.54017MR2026167
- Song, Y.-K., 10.1007/s10587-008-0053-4, Czech. Math. J. 58 (2008), 823-831. (2008) MR2455940DOI10.1007/s10587-008-0053-4
- Song, Y.-K., 10.1016/j.topol.2011.03.006, Topology Appl. 158 (2011), 1121-1123. (2011) Zbl1220.54008MR2794466DOI10.1016/j.topol.2011.03.006
- Tall, F. D., Normality versus collectionwise normality, Handbook of Set-Theoretic Topology K. Kunen and J. E. Vaughan North-Holland, Amsterdam (1984), 685-732. (1984) Zbl0552.54011MR0776634
- Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) MR1103993DOI10.1016/0166-8641(91)90077-Y
- Mill, J. van, Tkachuk, V. V., Wilson, R. G., 10.1016/j.topol.2006.03.029, Topology Appl. 154 (2007), 2127-2134. (2007) MR2324924DOI10.1016/j.topol.2006.03.029
- Vaughan, J. E., 10.1111/j.1749-6632.1996.tb36814.x, Ann. N. Y. Acad. Sci. 788 (1996), 203-208. (1996) Zbl0917.54023MR1460834DOI10.1111/j.1749-6632.1996.tb36814.x
- Yasui, Y., Gao, Z.-M., Spaces in countable web, Houston J. Math. 25 (1999), 327-335. (1999) Zbl0974.54011MR1697629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.