A note on the kernels of higher derivations
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 3, page 583-588
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Jiantao, and Du, Xiankun. "A note on the kernels of higher derivations." Czechoslovak Mathematical Journal 63.3 (2013): 583-588. <http://eudml.org/doc/260598>.
@article{Li2013,
abstract = {Let $k\subseteq k^\{\prime \}$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k^\{\prime \}[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\lbrace D_n\rbrace _\{n=0\}^\infty $ a higher $k$-derivation on $k[X]$ and $D^\{\prime \}=\lbrace D_n^\{\prime \}\rbrace _\{n=0\}^\infty $ a higher $k^\{\prime \}$-derivation on $k^\{\prime \}[X]$ such that $D^\{\prime \}_m(x_i)=D_m(x_i)$ for all $m\ge 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k^\{\prime \}[X]^\{D^\{\prime \}\}=k^\{\prime \}$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k^\{\prime \}[X]^\{D^\{\prime \}\}$ is a finitely generated $k^\{\prime \}$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.},
author = {Li, Jiantao, Du, Xiankun},
journal = {Czechoslovak Mathematical Journal},
keywords = {higher derivation; field extension; closed polynomial; higher derivation; field extension; closed polynomial},
language = {eng},
number = {3},
pages = {583-588},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the kernels of higher derivations},
url = {http://eudml.org/doc/260598},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Li, Jiantao
AU - Du, Xiankun
TI - A note on the kernels of higher derivations
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 583
EP - 588
AB - Let $k\subseteq k^{\prime }$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k^{\prime }[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\lbrace D_n\rbrace _{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D^{\prime }=\lbrace D_n^{\prime }\rbrace _{n=0}^\infty $ a higher $k^{\prime }$-derivation on $k^{\prime }[X]$ such that $D^{\prime }_m(x_i)=D_m(x_i)$ for all $m\ge 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k^{\prime }[X]^{D^{\prime }}=k^{\prime }$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k^{\prime }[X]^{D^{\prime }}$ is a finitely generated $k^{\prime }$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.
LA - eng
KW - higher derivation; field extension; closed polynomial; higher derivation; field extension; closed polynomial
UR - http://eudml.org/doc/260598
ER -
References
top- Arzhantsev, I. V., Petravchuk, A. P., 10.1007/s11253-008-0037-4, Ukr. Math. J. 59 (2007), 1783-1790. (2007) Zbl1164.13302MR2411588DOI10.1007/s11253-008-0037-4
- Kojima, H., Wada, N., 10.1080/00927871003660200, Commun. Algebra 39 (2011), 1577-1582. (2011) Zbl1235.13023MR2821493DOI10.1080/00927871003660200
- Mirzavaziri, M., 10.1080/00927870902828751, Commun. Algebra 38 (2010), 981-987. (2010) Zbl1191.16040MR2650383DOI10.1080/00927870902828751
- Miyanishi, M., Lectures on Curves on Rational and Unirational Surfaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics Berlin, Springer (1978). (1978) Zbl0425.14008MR0546289
- Nowicki, A., Polynomial Derivations and their Rings of Constants, N. Copernicus Univ. Press Toruń (1994). (1994) Zbl1236.13023MR2553232
- Roman, S., Advanced Linear Algebra, 3rd edition, Graduate Texts in Mathematics 135 New York, Springer (2008). (2008) Zbl1132.15002MR2344656
- Tanimoto, R., 10.1016/j.jpaa.2008.03.006, J. Pure Appl. Algebra 212 (2008), 2284-2297. (2008) Zbl1157.13004MR2426508DOI10.1016/j.jpaa.2008.03.006
- Wada, N., 10.4064/cm122-2-3, Colloq. Math. 122 (2011), 185-189. (2011) Zbl1213.13039MR2775166DOI10.4064/cm122-2-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.