Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator

M. K. Aouf; R. M. El-Ashwah; A. A. M. Hassan; A. H. Hassan

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 1, page 21-34
  • ISSN: 0231-9721

Abstract

top
In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions f ( z ) 𝒜 for which 1 + 1 b z D α , β , λ , δ n f ( z ) ' D α , β , λ , δ n f ( z ) - 1 ( α , β , λ , δ 0 ; β > α ; λ > δ ; b * ; n 0 ; z U ) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis.

How to cite

top

Aouf, M. K., et al. "Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 21-34. <http://eudml.org/doc/260599>.

@article{Aouf2013,
abstract = {In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal \{A\} $ for which $1+\frac\{1\}\{b\}\Big ( \frac\{z\left( D_\{\alpha ,\beta ,\lambda ,\delta \}^n f(z)\right)^\{\prime \}\}\{D_\{\alpha ,\beta ,\lambda ,\delta \}^\{n\}f(z)\}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb \{C\}^\{\ast \}$; $n\in \mathbb \{N\}_\{0\}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.},
author = {Aouf, M. K., El-Ashwah, R. M., Hassan, A. A. M., Hassan, A. H.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {analytic; subordination; Fekete–Szegö problem; analytic; subordination; Fekete-Szegö problem},
language = {eng},
number = {1},
pages = {21-34},
publisher = {Palacký University Olomouc},
title = {Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator},
url = {http://eudml.org/doc/260599},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Aouf, M. K.
AU - El-Ashwah, R. M.
AU - Hassan, A. A. M.
AU - Hassan, A. H.
TI - Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 21
EP - 34
AB - In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
LA - eng
KW - analytic; subordination; Fekete–Szegö problem; analytic; subordination; Fekete-Szegö problem
UR - http://eudml.org/doc/260599
ER -

References

top
  1. Al-Oboudi, F. M., 10.1155/S0161171204108090, Int. J. Math. Math. Sci. 27 (2004), 1429–1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
  2. Aouf, M. K., Darwish, H. E., Attiya, A. A., On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32, 10 (2001), 1443–1452. (2001) Zbl1027.30016MR1878059
  3. Aouf, M. K., Owa, S., Obradović, M., Certain classes of analytic functions of complex order and type beta, Rend. Mat. Appl. (7) 11, 4 (1991), 691–714. (1991) Zbl0764.30009MR1151594
  4. Aouf, M. K., Silverman, H., Fekete–Szegö inequality for n -starlike functions of complex order, Adv. Math. Sci. J. (2008), 1–12. (2008) 
  5. Chichra, P. N., Regular functions f ( z ) for which z f ' ( z ) is α -spirallike, Proc. Amer. Math. Soc. 49 (1975), 151–160. (1975) Zbl0317.30014MR0361033
  6. Darus, M., Ibrahim, R. W., On subclasses for generalized operators of complex order, Far East J. Math. Sci. 33, 3 (2009), 299–308. (2009) Zbl1168.30304MR2541301
  7. Fekete, M., Szegö, G., 10.1112/jlms/s1-8.2.85, J. London Math. Soc. 8 (1933), 85–89. (1933) DOI10.1112/jlms/s1-8.2.85
  8. Goyal, S. P., Kumar, S., Fekete-Szegö problem for a class of complex order related to Salagean operator, Bull. Math. Anal. Appl. 3, 4 (2011), 240–246. (2011) MR2955395
  9. Keogh, F. R., Merkes, E. P., 10.1090/S0002-9939-1969-0232926-9, Proc. Amer. Math. Soc. 20, 1 (1969), 8–12. (1969) Zbl0165.09102MR0232926DOI10.1090/S0002-9939-1969-0232926-9
  10. Libera, R. J., 10.4153/CJM-1967-038-0, Canad. J. Math. 19 (1967), 449–456. (1967) Zbl0181.08104MR0214750DOI10.4153/CJM-1967-038-0
  11. Libera, R. J., Ziegler, M., Regular functions f ( z ) for which z f ' ( z ) is α -spiral, Trans. Amer. Math. Soc. 166 (1972), 361–370. (1972) Zbl0245.30009MR0291433
  12. Ma, W., Minda, D., A unified treatment of some special classes of univalent functions, In: Li, Z., Ren, F., Lang, L., Zhang, S. (eds.): Proceedings of the conference on complex analysis, Int. Press. Conf. Proc. Lect. Notes Anal. Tianjin, China, 1 (1994), 157–169. (1994) Zbl0823.30007MR1343506
  13. Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. 255, Marcel Dekker, Inc., New York, 2000. (2000) Zbl0954.34003MR1760285
  14. Nasr, M. A., Aouf, M. K., On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 9 (1982), 565–582. (1982) 
  15. Nasr, M. A., Aouf, M. K., Bounded convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10 (1983), 513–527. (1983) 
  16. Nasr, M. A., Aouf, M. K., 10.1007/BF02863012, Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97–102. (1983) Zbl0548.30004MR0755125DOI10.1007/BF02863012
  17. Nasr, M. A., Aouf, M. K., Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1–12. (1985) Zbl0596.30017MR0805912
  18. Ramadan, S. F., Darus, M., On the Fekete Szegö inequality for a class of analytic functions defined by using generalized differential operator, Acta Univ. Apulensis 26 (2011), 167–178. (2011) Zbl1274.30027MR2850609
  19. Ravichandran, V., Polatoglu, Y., Bolcal, M., Sen, A., Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005), 9–15. (2005) Zbl1105.30006MR2212704
  20. Salagean, G. S., Subclasses of univalent functions, Lecture Notes in Math. 1013 (1983), Springer-Verlag, Berlin, 362–372. (1983) Zbl0531.30009MR0738107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.