Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
M. K. Aouf; R. M. El-Ashwah; A. A. M. Hassan; A. H. Hassan
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 21-34
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topAouf, M. K., et al. "Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 21-34. <http://eudml.org/doc/260599>.
@article{Aouf2013,
abstract = {In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal \{A\} $ for which $1+\frac\{1\}\{b\}\Big ( \frac\{z\left( D_\{\alpha ,\beta ,\lambda ,\delta \}^n f(z)\right)^\{\prime \}\}\{D_\{\alpha ,\beta ,\lambda ,\delta \}^\{n\}f(z)\}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb \{C\}^\{\ast \}$; $n\in \mathbb \{N\}_\{0\}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.},
author = {Aouf, M. K., El-Ashwah, R. M., Hassan, A. A. M., Hassan, A. H.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {analytic; subordination; Fekete–Szegö problem; analytic; subordination; Fekete-Szegö problem},
language = {eng},
number = {1},
pages = {21-34},
publisher = {Palacký University Olomouc},
title = {Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator},
url = {http://eudml.org/doc/260599},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Aouf, M. K.
AU - El-Ashwah, R. M.
AU - Hassan, A. A. M.
AU - Hassan, A. H.
TI - Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 21
EP - 34
AB - In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
LA - eng
KW - analytic; subordination; Fekete–Szegö problem; analytic; subordination; Fekete-Szegö problem
UR - http://eudml.org/doc/260599
ER -
References
top- Al-Oboudi, F. M., 10.1155/S0161171204108090, Int. J. Math. Math. Sci. 27 (2004), 1429–1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
- Aouf, M. K., Darwish, H. E., Attiya, A. A., On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32, 10 (2001), 1443–1452. (2001) Zbl1027.30016MR1878059
- Aouf, M. K., Owa, S., Obradović, M., Certain classes of analytic functions of complex order and type beta, Rend. Mat. Appl. (7) 11, 4 (1991), 691–714. (1991) Zbl0764.30009MR1151594
- Aouf, M. K., Silverman, H., Fekete–Szegö inequality for -starlike functions of complex order, Adv. Math. Sci. J. (2008), 1–12. (2008)
- Chichra, P. N., Regular functions for which is -spirallike, Proc. Amer. Math. Soc. 49 (1975), 151–160. (1975) Zbl0317.30014MR0361033
- Darus, M., Ibrahim, R. W., On subclasses for generalized operators of complex order, Far East J. Math. Sci. 33, 3 (2009), 299–308. (2009) Zbl1168.30304MR2541301
- Fekete, M., Szegö, G., 10.1112/jlms/s1-8.2.85, J. London Math. Soc. 8 (1933), 85–89. (1933) DOI10.1112/jlms/s1-8.2.85
- Goyal, S. P., Kumar, S., Fekete-Szegö problem for a class of complex order related to Salagean operator, Bull. Math. Anal. Appl. 3, 4 (2011), 240–246. (2011) MR2955395
- Keogh, F. R., Merkes, E. P., 10.1090/S0002-9939-1969-0232926-9, Proc. Amer. Math. Soc. 20, 1 (1969), 8–12. (1969) Zbl0165.09102MR0232926DOI10.1090/S0002-9939-1969-0232926-9
- Libera, R. J., 10.4153/CJM-1967-038-0, Canad. J. Math. 19 (1967), 449–456. (1967) Zbl0181.08104MR0214750DOI10.4153/CJM-1967-038-0
- Libera, R. J., Ziegler, M., Regular functions for which is -spiral, Trans. Amer. Math. Soc. 166 (1972), 361–370. (1972) Zbl0245.30009MR0291433
- Ma, W., Minda, D., A unified treatment of some special classes of univalent functions, In: Li, Z., Ren, F., Lang, L., Zhang, S. (eds.): Proceedings of the conference on complex analysis, Int. Press. Conf. Proc. Lect. Notes Anal. Tianjin, China, 1 (1994), 157–169. (1994) Zbl0823.30007MR1343506
- Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. 255, Marcel Dekker, Inc., New York, 2000. (2000) Zbl0954.34003MR1760285
- Nasr, M. A., Aouf, M. K., On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 9 (1982), 565–582. (1982)
- Nasr, M. A., Aouf, M. K., Bounded convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10 (1983), 513–527. (1983)
- Nasr, M. A., Aouf, M. K., 10.1007/BF02863012, Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97–102. (1983) Zbl0548.30004MR0755125DOI10.1007/BF02863012
- Nasr, M. A., Aouf, M. K., Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1–12. (1985) Zbl0596.30017MR0805912
- Ramadan, S. F., Darus, M., On the Fekete Szegö inequality for a class of analytic functions defined by using generalized differential operator, Acta Univ. Apulensis 26 (2011), 167–178. (2011) Zbl1274.30027MR2850609
- Ravichandran, V., Polatoglu, Y., Bolcal, M., Sen, A., Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005), 9–15. (2005) Zbl1105.30006MR2212704
- Salagean, G. S., Subclasses of univalent functions, Lecture Notes in Math. 1013 (1983), Springer-Verlag, Berlin, 362–372. (1983) Zbl0531.30009MR0738107
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.