Minimum degree, leaf number and traceability
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 539-545
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMukwembi, Simon. "Minimum degree, leaf number and traceability." Czechoslovak Mathematical Journal 63.2 (2013): 539-545. <http://eudml.org/doc/260602>.
@article{Mukwembi2013,
abstract = {Let $G$ be a finite connected graph with minimum degree $\delta $. The leaf number $L(G)$ of $G$ is defined as the maximum number of leaf vertices contained in a spanning tree of $G$. We prove that if $\delta \ge \frac\{1\}\{2\}(L(G)+1)$, then $G$ is 2-connected. Further, we deduce, for graphs of girth greater than 4, that if $\delta \ge \smash\{\frac\{1\}\{2\}\}(L(G)+1)$, then $G$ contains a spanning path. This provides a partial solution to a conjecture of the computer program Graffiti.pc [DeLaVi na and Waller, Spanning trees with many leaves and average distance, Electron. J. Combin. 15 (2008), 1–16]. For $G$ claw-free, we show that if $\delta \ge \frac\{1\}\{2\}(L(G)+1)$, then $G$ is Hamiltonian. This again confirms, and even improves, the conjecture of Graffiti.pc for this class of graphs.},
author = {Mukwembi, Simon},
journal = {Czechoslovak Mathematical Journal},
keywords = {interconnection network; graph; leaf number; traceability; Hamiltonicity; Graffiti.pc; interconnection network; leaf number; traceability; Hamiltonicity; Graffiti.pc},
language = {eng},
number = {2},
pages = {539-545},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Minimum degree, leaf number and traceability},
url = {http://eudml.org/doc/260602},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Mukwembi, Simon
TI - Minimum degree, leaf number and traceability
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 539
EP - 545
AB - Let $G$ be a finite connected graph with minimum degree $\delta $. The leaf number $L(G)$ of $G$ is defined as the maximum number of leaf vertices contained in a spanning tree of $G$. We prove that if $\delta \ge \frac{1}{2}(L(G)+1)$, then $G$ is 2-connected. Further, we deduce, for graphs of girth greater than 4, that if $\delta \ge \smash{\frac{1}{2}}(L(G)+1)$, then $G$ contains a spanning path. This provides a partial solution to a conjecture of the computer program Graffiti.pc [DeLaVi na and Waller, Spanning trees with many leaves and average distance, Electron. J. Combin. 15 (2008), 1–16]. For $G$ claw-free, we show that if $\delta \ge \frac{1}{2}(L(G)+1)$, then $G$ is Hamiltonian. This again confirms, and even improves, the conjecture of Graffiti.pc for this class of graphs.
LA - eng
KW - interconnection network; graph; leaf number; traceability; Hamiltonicity; Graffiti.pc; interconnection network; leaf number; traceability; Hamiltonicity; Graffiti.pc
UR - http://eudml.org/doc/260602
ER -
References
top- Čada, R., Flandrin, E., Kang, H., 10.1007/s11786-011-0074-5, Math. Comput. Sci. 5 (2011), 21-25. (2011) Zbl1254.05085MR2864050DOI10.1007/s11786-011-0074-5
- DeLaViña, E., Written on the Wall II (Conjectures of Graffiti.pc), http://cms.dt.uh.edu/faculty/delavinae/research/wowII/.
- DeLaViña, E., Waller, B., Spanning trees with many leaves and average distance, Electron. J. Comb. 15 (2008), 16 p. (2008) Zbl1181.05052MR2383453
- Ding, G., Johnson, T., Seymour, P., 10.1002/jgt.1013, J. Graph Theory 37 (2001), 189-197. (2001) Zbl0986.05030MR1834849DOI10.1002/jgt.1013
- Duffus, D., Jacobson, M. S., Gould, R. J., Forbidden subgraphs and the Hamiltonian theme, The Theory and Applications of Graphs 4th int. Conf., Kalamazoo/Mich. 1980 Wiley, New York 297-316 (1981). (1981) Zbl0466.05049MR0634535
- Fernandes, L. M., Gouveia, L., 10.1016/S0377-2217(96)00327-X, Eur. J. Oper. Res. 104 (1998), 250-261. (1998) Zbl0957.90010DOI10.1016/S0377-2217(96)00327-X
- Goodman, S., Hedetniemi, S., 10.1016/0095-8956(74)90061-6, J. Comb. Theory, Ser. B 16 (1974), 175-180. (1974) Zbl0275.05126MR0357222DOI10.1016/0095-8956(74)90061-6
- Gould, R. J., Jacobson, M. S., 10.1016/0012-365X(82)90216-3, Discrete Math. 42 (1982), 189-196. (1982) Zbl0495.05039MR0677052DOI10.1016/0012-365X(82)90216-3
- Griggs, J. R., Wu, M., Spanning trees in graphs of minimum degree 4 or 5, Discrete Math. 104 (1992), 167-183. (1992) Zbl0776.05031MR1172845
- Kleitman, D. J., West, D. B., 10.1137/0404010, SIAM J. Discrete Math. 4 (1991), 99-106. (1991) Zbl0734.05041MR1090293DOI10.1137/0404010
- Li, H., 10.1002/jgt.3190200408, J. Graph Theory 20 447-457 (1995). (1995) Zbl0841.05062MR1358535DOI10.1002/jgt.3190200408
- Mukwembi, S., Munyira, S., Radius, diameter and the leaf number, Quaest. Math. (Submitted).
- Ren, S., 10.1016/0012-365X(95)00230-T, Discrete Math. 161 (1996), 229-234. (1996) Zbl0869.05041MR1420535DOI10.1016/0012-365X(95)00230-T
- Storer, J. A., 10.1016/0020-0190(81)90141-1, Inf. Process Lett. 13 (1981), 8-11. (1981) Zbl0482.05031MR0636311DOI10.1016/0020-0190(81)90141-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.