# $\mathcal{Z}$-distributive function lattices

Mathematica Bohemica (2013)

- Volume: 138, Issue: 3, page 259-287
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topErné, Marcel. "$\mathcal {Z}$-distributive function lattices." Mathematica Bohemica 138.3 (2013): 259-287. <http://eudml.org/doc/260626>.

@article{Erné2013,

abstract = {It is known that for a nonempty topological space $X$ and a nonsingleton complete lattice $Y$ endowed with the Scott topology, the partially ordered set $[X,Y]$ of all continuous functions from $X$ into $Y$ is a continuous lattice if and only if both $Y$ and the open set lattice $\mathcal \{O\} X$ are continuous lattices. This result extends to certain classes of $\mathcal \{Z\}$-distributive lattices, where $\mathcal \{Z\}$ is a subset system replacing the system $\mathcal \{D\}$ of all directed subsets (for which the $\mathcal \{D\}$-distributive complete lattices are just the continuous ones). In particular, it is shown that if $[X,Y]$ is a complete lattice then it is supercontinuous (i.e. completely distributive) iff both $Y$ and $\mathcal \{O\} X$ are supercontinuous. Moreover, the Scott topology on $Y$ is the only one making that equivalence true for all spaces $X$ with completely distributive topology. On the way to these results, we find necessary and sufficient conditions for $[X,Y]$ to be complete, and some new, purely topological characterizations of continuous lattices by continuity conditions on their (infinitary) lattice operations.},

author = {Erné, Marcel},

journal = {Mathematica Bohemica},

keywords = {completely distributive lattice; continuous function; continuous lattice; Scott topology; subset system; $\mathcal \{Z\}$-continuous; $\mathcal \{Z\}$-distributive; completely distributive lattice; continuous lattice; Scott topology; subset system; -continuous; -distributive},

language = {eng},

number = {3},

pages = {259-287},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {$\mathcal \{Z\}$-distributive function lattices},

url = {http://eudml.org/doc/260626},

volume = {138},

year = {2013},

}

TY - JOUR

AU - Erné, Marcel

TI - $\mathcal {Z}$-distributive function lattices

JO - Mathematica Bohemica

PY - 2013

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 138

IS - 3

SP - 259

EP - 287

AB - It is known that for a nonempty topological space $X$ and a nonsingleton complete lattice $Y$ endowed with the Scott topology, the partially ordered set $[X,Y]$ of all continuous functions from $X$ into $Y$ is a continuous lattice if and only if both $Y$ and the open set lattice $\mathcal {O} X$ are continuous lattices. This result extends to certain classes of $\mathcal {Z}$-distributive lattices, where $\mathcal {Z}$ is a subset system replacing the system $\mathcal {D}$ of all directed subsets (for which the $\mathcal {D}$-distributive complete lattices are just the continuous ones). In particular, it is shown that if $[X,Y]$ is a complete lattice then it is supercontinuous (i.e. completely distributive) iff both $Y$ and $\mathcal {O} X$ are supercontinuous. Moreover, the Scott topology on $Y$ is the only one making that equivalence true for all spaces $X$ with completely distributive topology. On the way to these results, we find necessary and sufficient conditions for $[X,Y]$ to be complete, and some new, purely topological characterizations of continuous lattices by continuity conditions on their (infinitary) lattice operations.

LA - eng

KW - completely distributive lattice; continuous function; continuous lattice; Scott topology; subset system; $\mathcal {Z}$-continuous; $\mathcal {Z}$-distributive; completely distributive lattice; continuous lattice; Scott topology; subset system; -continuous; -distributive

UR - http://eudml.org/doc/260626

ER -

## References

top- Bandelt, H.-J., Erné, M., 10.1016/0022-4049(83)90057-9, J. Pure Appl. Algebra 30 (1983), 219-226. (1983) Zbl0523.06001MR0724033DOI10.1016/0022-4049(83)90057-9
- Bandelt, H.-J., Erné, M., Representations and embeddings of $M$-distributive lattices, Houston J. Math. 10 (1984), 315-324. (1984) Zbl0551.06014MR0763234
- Baranga, A., 10.1016/0012-365X(94)00307-5, Discrete Math. 152 (1996), 33-45. (1996) Zbl0851.06003MR1388630DOI10.1016/0012-365X(94)00307-5
- Baranga, A., Z-continuous posets, topological aspects, Stud. Cercet. Mat. 49 (1997), 3-16. (1997) Zbl0883.06007MR1671509
- Erné, M., 10.1007/BFb0089904, Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 61-96 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. (1981) DOI10.1007/BFb0089904
- Erné, M., Adjunctions and standard constructions for partially ordered sets, Contributions to General Algebra. Proc. Klagenfurt Conf. 1982 Contrib. Gen. Algebra 2 Hölder, Wien 77-106 (1983), G. Eigenthaler et al. Contributions to General Algebra. (1983) Zbl0533.06001MR0721648
- Erné, M., The ABC of order and topology, Category Theory at Work. Proc. Workshop, Bremen 1991 Res. Expo. Math. 18 57-83 (1991), H. Herrlich, H.-E. Porst Heldermann, Berlin. (1991) Zbl0735.18005MR1147919
- Erné, M., Algebraic ordered sets and their generalizations, I. Rosenberg Algebras and Orders. Kluwer Academic Publishers. NATO ASI Ser. C, Math. Phys. Sci. 389 Kluwer Acad. Publ., Dordrecht 113-192 (1993). (1993) Zbl0791.06007MR1233790
- Erné, M., 10.1023/A:1008657800278, Appl. Categ. Struct. 7 (1999), 31-70. (1999) Zbl0939.06005MR1714179DOI10.1023/A:1008657800278
- Erné, M., Minimal bases, ideal extensions, and basic dualities, Topol. Proc. 29 (2005), 445-489. (2005) Zbl1128.06001MR2244484
- Erné, M., Closure, F. Mynard, E. Pearl Beyond Topology. AMS Contemporary Mathematics 486 Providence, R.I. (2009), 163-238. (2009) Zbl1209.08001MR2555999
- Erné, M., 10.1016/j.topol.2009.03.029, Topology Appl. 156 (2009), 2054-2069. (2009) Zbl1190.54022MR2532134DOI10.1016/j.topol.2009.03.029
- Erné, M., Gatzke, H., Convergence and continuity in partially ordered sets and semilattices, Continuous Lattices and Their Applications. Proc. 3rd Conf., Bremen 1982 Lect. Notes Pure Appl. Math. 101 9-40 (1985). (1985) Zbl0591.54029MR0825993
- Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S., A Compendium of Continuous Lattices, Springer, Berlin (1980). (1980) Zbl0452.06001MR0614752
- Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S., Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications 93 Cambridge University Press, Cambridge (2003). (2003) Zbl1088.06001MR1975381
- Hoffmann, R.-E., 10.1007/BFb0089907, Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 159-208 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. (1981) Zbl0476.06005DOI10.1007/BFb0089907
- Isbell, J., 10.1090/S0002-9939-1982-0656096-4, Proc. Am. Math. Soc. 85 (1982), 333-334. (1982) Zbl0492.06006MR0656096DOI10.1090/S0002-9939-1982-0656096-4
- Keimel, K., 10.1016/j.entcs.2009.11.025, Electronical Notes in Th. Computer Sci. 257 (2009), 35-54. (2009) DOI10.1016/j.entcs.2009.11.025
- Kříž, I., Pultr, A., A spatiality criterion and an example of a quasitopology which is not a topology, Houston J. Math. 15 (1989), 215-234. (1989) Zbl0695.54002MR1022063
- Meseguer, J., Order completion monads, Algebra Univers. 16 (1983), 63-82. (1983) Zbl0522.18005MR0690831
- Novak, D., 10.1090/S0002-9947-1982-0662058-8, Trans. Am. Math. Soc. 272 (1982), 645-667. (1982) Zbl0504.06003MR0662058DOI10.1090/S0002-9947-1982-0662058-8
- Qin, F., Function space of Z-continuous lattices, Fuzzy Syst. Math. 14 (2000), 31-35 Chinese. (2000) MR1802864
- Raney, G. N., 10.1090/S0002-9939-1953-0058568-4, Proc. Am. Math. Soc. 4 (1953), 518-522. (1953) Zbl0053.35201MR0058568DOI10.1090/S0002-9939-1953-0058568-4
- Scott, D. S., Continuous lattices, Toposes, Algebraic Geometry and Logic. Dalhousie Univ. Halifax 1971, Lect. Notes Math. 274 97-136 (1972), Springer, Berlin. (1972) Zbl0239.54006MR0404073
- Venugopalan, G., Z-continuous posets, Houston J. Math. 12 (1986), 275-294. (1986) Zbl0614.06007MR0862043
- Wright, J. B., Wagner, E. G., Thatcher, J. W., 10.1016/0304-3975(78)90040-3, Theor. Comput. Sci. 7 (1978), 57-77. (1978) Zbl0732.06001MR0480224DOI10.1016/0304-3975(78)90040-3
- Wyler, O., 10.1007/BFb0089920, B. Banaschewski, R.-E. Hoffmann Continuous Lattices. Proc. Conf., Bremen 1979, Lect. Notes Math. 871 384-389 (1981), Springer, Berlin. (1981) Zbl0488.54018DOI10.1007/BFb0089920

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.