Some mean convergence and complete convergence theorems for sequences of -linearly negative quadrant dependent random variables
Yongfeng Wu; Andrew Rosalsky; Andrei Volodin
Applications of Mathematics (2013)
- Volume: 58, Issue: 5, page 511-529
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWu, Yongfeng, Rosalsky, Andrew, and Volodin, Andrei. "Some mean convergence and complete convergence theorems for sequences of $m$-linearly negative quadrant dependent random variables." Applications of Mathematics 58.5 (2013): 511-529. <http://eudml.org/doc/260633>.
@article{Wu2013,
abstract = {The structure of linearly negative quadrant dependent random variables is extended by introducing the structure of $m$-linearly negative quadrant dependent random variables ($m=1,2,\dots $). For a sequence of $m$-linearly negative quadrant dependent random variables $\lbrace X_n, n\ge 1\rbrace $ and $1<p<2$ (resp. $1\le p <2$), conditions are provided under which $n^\{-1/p\} \sum _\{k=1\}^\{n\} (X_k - EX_k) \rightarrow 0$ in $L^1$ (resp. in $L^p$). Moreover, for $1\le p < 2$, conditions are provided under which $n^\{-1/p\} \sum _\{k=1\}^\{n\} (X_k - EX_k)$ converges completely to $0$. The current work extends some results of Pyke and Root (1968) and it extends and improves some results of Wu, Wang, and Wu (2006). An open problem is posed.},
author = {Wu, Yongfeng, Rosalsky, Andrew, Volodin, Andrei},
journal = {Applications of Mathematics},
keywords = {$m$-linearly negative quadrant dependence; mean convergence; complete convergence; -linearly negative quadrant dependence; -convergence; complete convergence},
language = {eng},
number = {5},
pages = {511-529},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some mean convergence and complete convergence theorems for sequences of $m$-linearly negative quadrant dependent random variables},
url = {http://eudml.org/doc/260633},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Wu, Yongfeng
AU - Rosalsky, Andrew
AU - Volodin, Andrei
TI - Some mean convergence and complete convergence theorems for sequences of $m$-linearly negative quadrant dependent random variables
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 5
SP - 511
EP - 529
AB - The structure of linearly negative quadrant dependent random variables is extended by introducing the structure of $m$-linearly negative quadrant dependent random variables ($m=1,2,\dots $). For a sequence of $m$-linearly negative quadrant dependent random variables $\lbrace X_n, n\ge 1\rbrace $ and $1<p<2$ (resp. $1\le p <2$), conditions are provided under which $n^{-1/p} \sum _{k=1}^{n} (X_k - EX_k) \rightarrow 0$ in $L^1$ (resp. in $L^p$). Moreover, for $1\le p < 2$, conditions are provided under which $n^{-1/p} \sum _{k=1}^{n} (X_k - EX_k)$ converges completely to $0$. The current work extends some results of Pyke and Root (1968) and it extends and improves some results of Wu, Wang, and Wu (2006). An open problem is posed.
LA - eng
KW - $m$-linearly negative quadrant dependence; mean convergence; complete convergence; -linearly negative quadrant dependence; -convergence; complete convergence
UR - http://eudml.org/doc/260633
ER -
References
top- Chandra, T. K., Uniform integrability in the Cesàro sense and the weak law of large numbers, Sankhyā, Ser. A 51 (1989), 309-317. (1989) Zbl0721.60024MR1175608
- Fuk, D. H., Nagaev, S. V., Probability inequalities for sums of independent random variables, Theory Probab. Appl. 16 (1971), 643-660. (1971) Zbl0259.60024MR0293695
- Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. (1983) Zbl0508.62041MR0684886DOI10.1214/aos/1176346079
- Ko, M.-H., Choi, Y.-K., Choi, Y.-S., 10.4134/CKMS.2007.22.1.137, Commun. Korean Math. Soc. 22 (2007), 137-143. (2007) Zbl1168.60336MR2286902DOI10.4134/CKMS.2007.22.1.137
- Ko, M.-H., Ryu, D.-H., Kim, T.-S., 10.11650/twjm/1500404705, Taiwanese J. Math. 11 (2007), 511-522. (2007) Zbl1126.60026MR2333362DOI10.11650/twjm/1500404705
- Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat. 37 (1966), 1137-1153. (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
- Newman, C. M., Asymptotic independence and limit theorems for positively and negatively dependent random variables, Inequalities in Statistics and Probability. IMS Lecture Notes Monogr. Ser. 5 Y. L. Tong Inst. Math. Statist. Hayward (1984), 127-140. (1984) MR0789244
- Cabrera, M. Ordóñez, Volodin, A. I., 10.1016/j.jmaa.2004.12.025, J. Math. Anal. Appl. 305 (2005), 644-658. (2005) MR2131528DOI10.1016/j.jmaa.2004.12.025
- Pyke, R., Root, D., 10.1214/aoms/1177698400, Ann. Math. Stat. 39 (1968), 379-381. (1968) Zbl0164.47303MR0224137DOI10.1214/aoms/1177698400
- Sung, S. H., Lisawadi, S., Volodin, A., 10.4134/JKMS.2008.45.1.289, J. Korean Math. Soc. 45 (2008), 289-300. (2008) Zbl1136.60319MR2375136DOI10.4134/JKMS.2008.45.1.289
- Wan, C. G., Law of large numbers and complete convergence for pairwise NQD random sequences, Acta Math. Appl. Sin. 28 (2005), 253-261 Chinese. (2005) MR2157985
- Wang, J. F., Zhang, L. X., 10.1007/s10474-006-0024-x, Acta Math. Hung. 110 (2006), 293-308. (2006) Zbl1121.60024MR2213231DOI10.1007/s10474-006-0024-x
- Wang, X., Hu, S., Yang, W., Li, X., 10.1016/j.jkss.2010.01.002, J. Korean Statist. Soc. 39 (2010), 555-564. (2010) Zbl1294.60037MR2780225DOI10.1016/j.jkss.2010.01.002
- Wu, Q., Wang, Y., Wu, Y., On some limit theorems for sums of NA random matrix sequences, Chin. J. Appl. Probab. Stat. 22 (2006), 56-62 Chinese. (2006) Zbl1167.60315MR2275261
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.