Analysis of structural properties of Petri nets based on product incidence matrix
Kybernetika (2013)
- Volume: 49, Issue: 4, page 601-618
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJi, Guangyou, and Wang, Mingzhe. "Analysis of structural properties of Petri nets based on product incidence matrix." Kybernetika 49.4 (2013): 601-618. <http://eudml.org/doc/260636>.
@article{Ji2013,
	abstract = {This paper presents some structural properties of a generalized Petri net (PN) with an algorithm to determine the (partial) conservativeness and (partial) consistency of the net. A product incidence matrix $A=CC^T$ or $\tilde\{A\}=C^TC$ is defined and used to further improve the relations among PNs, linear inequalities and matrix analysis. Thus, based on Cramer’s Rule, a new approach for the study of the solution of a linear system is given in terms of certain sub-determinants of the coefficient matrix and an efficient algorithm is proposed to compute these sub-determinants. The paper extends the common necessary and/or sufficient conditions for conservativeness and consistency in previous papers and some examples are designed to explain the conclusions finally.},
	author = {Ji, Guangyou, Wang, Mingzhe},
	journal = {Kybernetika},
	keywords = {Petri net; structural property; linear inequality; product incidence matrix; Petri net; structural property; linear inequality; product incidence matrix},
	language = {eng},
	number = {4},
	pages = {601-618},
	publisher = {Institute of Information Theory and Automation AS CR},
	title = {Analysis of structural properties of Petri nets based on product incidence matrix},
	url = {http://eudml.org/doc/260636},
	volume = {49},
	year = {2013},
}
TY  - JOUR
AU  - Ji, Guangyou
AU  - Wang, Mingzhe
TI  - Analysis of structural properties of Petri nets based on product incidence matrix
JO  - Kybernetika
PY  - 2013
PB  - Institute of Information Theory and Automation AS CR
VL  - 49
IS  - 4
SP  - 601
EP  - 618
AB  - This paper presents some structural properties of a generalized Petri net (PN) with an algorithm to determine the (partial) conservativeness and (partial) consistency of the net. A product incidence matrix $A=CC^T$ or $\tilde{A}=C^TC$ is defined and used to further improve the relations among PNs, linear inequalities and matrix analysis. Thus, based on Cramer’s Rule, a new approach for the study of the solution of a linear system is given in terms of certain sub-determinants of the coefficient matrix and an efficient algorithm is proposed to compute these sub-determinants. The paper extends the common necessary and/or sufficient conditions for conservativeness and consistency in previous papers and some examples are designed to explain the conclusions finally.
LA  - eng
KW  - Petri net; structural property; linear inequality; product incidence matrix; Petri net; structural property; linear inequality; product incidence matrix
UR  - http://eudml.org/doc/260636
ER  - 
References
top- Ahmad, F., Hejiao, H., Xiaolong, W., 10.3923/itj.2008.285.291, Using Transition Vectors, Inform. Technol. J. 7 (2008), 285-291. DOI10.3923/itj.2008.285.291
- Berthelot, G., Terrat, R., 10.1109/TCOM.1982.1095452, IEEE Trans. Commun. COM-30 (1982), 12, 2497-2505. MR0687447DOI10.1109/TCOM.1982.1095452
- Cheng, T., Zeng, W., 10.1109/3468.650328, IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 28 (1998), 1, 114-121. DOI10.1109/3468.650328
- Fiedler, M., Pták, V., On matrices with non-positive off-diagonal elements and positive principal minors., Czechoslovak Math. J. 12 (1962), 382-400. Zbl0131.24806MR0142565
- Liu, G., Jiang, Ch.-J., Incidence matrix based methods for computing repetitive vectors and siphons of Petri net., J. Inform. Sci. Engrg. 25 (2009), 121-136. MR2509898
- Hefferon, J., Internet published textbook., 2011. III: Laplaces Expansion, and Topic: Cramers Rule, http://joshua.smcvt.edu/linearalgebra/.
- Liao, J. L., Wang, M., Yang, C., A new method for structural analysis of Petri net models based on incidence matrix., J. Inform. Comput. Sci. 8 (2011), 6, 877-884.
- Karp, R., Miller, R., 10.1016/S0022-0000(69)80011-5, J. Comput. Syst. Sci. 3 (1969), 147-195. Zbl0369.68013MR0246720DOI10.1016/S0022-0000(69)80011-5
- Lien, Y. L., 10.1137/0205020, SIAM J. Comput. 5 (1976), 251-265. Zbl0332.68037MR0419093DOI10.1137/0205020
- Murata, T., Petri nets: Properties, analysis and applications., Proc. IEEE 77 (1989), 541-580.
- Matcovschi, M., Mahulea, C., Pastravanu, O., Exploring structural properties of Petri nets in MATLAB., Trans. Automat. Control Comput. Sci. XLVII(LI), (2001), 1 - 4, 15-26. Zbl1240.68148
- Xiong, P. Ch., Fan, Y. S., Zhou, M. Ch., 10.1109/TSMCA.2009.2037018, IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 40 (2010), 376-387. DOI10.1109/TSMCA.2009.2037018
- Peterson, J., Petri Net Theory and the Modelling of Systems., Prentice Hall, 1983. Zbl0461.68059MR0610984
- Rachid, B., Abdellah, E. M., 10.1109/TSMCA.2005.851323, IEEE Trans. Systems, Man, Cybernet., Part A: Systems and Humans 35 (2005), 784-794. DOI10.1109/TSMCA.2005.851323
- Takano, K., Taoka, S., Yamauchi, M., Watanabe, T., Two efficient methods for computing Petri net invariants., In: Proc. IEEE Internat. Conf. on Systems, Man, Cybern. 2001, pp. 2717-2722.
- Takano, K., Taoka, S., Yamauchi, M., Watanabe, T., Experimental evaluation of two algorithms for computing Petri net invariants., IEICE Trans. Fundam. E84-A11 (2001), 2871-2880.
- Wu, Y., Xie, L. Y., Li, J. D., New method to identify minimal cut sets using the incidence matrix of Petri nets., China Mech. Engrg. 19 (2008), 1044-1047.
- Yahia, C. A., Zerhouni, N., 10.1016/S0016-0032(99)00008-3, J. Franklin Inst. 336 (1999), 833-849. Zbl0973.93029MR1696381DOI10.1016/S0016-0032(99)00008-3
- Yahia, C. A., Zerhouni, N., Moudni, A. El, Ferney, M., 10.1109/3468.747851, IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 29 (1999), 164-172. DOI10.1109/3468.747851
- Yamauchi, M., Wakuda, M., Taoka, S., Watanabe, T., A fast and space-saving algorithm for computing invariants of Petri nets., In: Proc. IEEE Internat. Conf. Systems, Man, Cybernet. 1999, pp. 866-871.
- Zurawski, R., 10.1109/TIE.2005.844225, IEEE Trans. Industr. Electron. 52 (2005), 595-609. DOI10.1109/TIE.2005.844225
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 