On -embedded sets and extension of mappings
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 377-396
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKarlova, Olena. "On $\alpha $-embedded sets and extension of mappings." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 377-396. <http://eudml.org/doc/260651>.
@article{Karlova2013,
abstract = {We introduce and study $\alpha $-embedded sets and apply them to generalize the Kuratowski Extension Theorem.},
author = {Karlova, Olena},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\alpha $-embedded set; $\alpha $-separated set; extension; -embedded set; -separated set; extension},
language = {eng},
number = {3},
pages = {377-396},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\alpha $-embedded sets and extension of mappings},
url = {http://eudml.org/doc/260651},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Karlova, Olena
TI - On $\alpha $-embedded sets and extension of mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 377
EP - 396
AB - We introduce and study $\alpha $-embedded sets and apply them to generalize the Kuratowski Extension Theorem.
LA - eng
KW - $\alpha $-embedded set; $\alpha $-separated set; extension; -embedded set; -separated set; extension
UR - http://eudml.org/doc/260651
ER -
References
top- Blair R., Filter characterization of -, -, and -embeddings, Fund. Math. 90 (1976), 285–300. MR0415564
- Blair R., Hager A., 10.1007/BF01189255, Math. Z. 136 (1974), 41–52. Zbl0264.54011MR0385793DOI10.1007/BF01189255
- Corson H., 10.2307/2372929, Amer. J. Math. 81 (1959), 785–796. Zbl0095.37302MR0107222DOI10.2307/2372929
- HASH(0x9f826e8), Encyclopedia of General Topology, edited by K.P. Hart, Jun-iti Nagata and J.E. Vaughan, Elsevier, 2004. MR2049453
- Engelking R., General Topology. Revised and completed edition, Heldermann Verlag, Berlin, 1989. MR1039321
- Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960. Zbl0327.46040MR0116199
- Kalenda O., Spurný J., 10.1016/j.topol.2004.09.007, Topology Appl. 149 (2005), 195–216. Zbl1075.54011MR2130864DOI10.1016/j.topol.2004.09.007
- Karlova O., Baire classification of mappings which are continuous with respect to the first variable and of the ’th functionally class with respect to the second variable, Mathematical Bulletin NTSH 2 (2005), 98–114 (in Ukrainian).
- Karlova O., Classification of separately continuous functions with values in -metrizable spaces, Appl. Gen. Topol. 13 (2012), no. 2, 167–178. MR2998364
- Kombarov A., Malykhin V., On -products, Dokl. Akad. Nauk SSSR 213 (1973), 774–776 (in Russian). MR0339073
- Kuratowski K., Topology, Vol. 1, Moscow, Mir, 1966 (in Russian). MR0259836
- Lukeš J., Malý J., Zajíček L., Fine Topology Methods in Real Analysis and Potential Theory, Springer, Berlin, 1986. Zbl0607.31001MR0861411
- Ohta H., Extension properties and the Niemytski plane, Appl. Gen. Topol. 1 (2000), no. 1, 45–60. MR1796931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.