On α -embedded sets and extension of mappings

Olena Karlova

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 3, page 377-396
  • ISSN: 0010-2628

Abstract

top
We introduce and study α -embedded sets and apply them to generalize the Kuratowski Extension Theorem.

How to cite

top

Karlova, Olena. "On $\alpha $-embedded sets and extension of mappings." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 377-396. <http://eudml.org/doc/260651>.

@article{Karlova2013,
abstract = {We introduce and study $\alpha $-embedded sets and apply them to generalize the Kuratowski Extension Theorem.},
author = {Karlova, Olena},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\alpha $-embedded set; $\alpha $-separated set; extension; -embedded set; -separated set; extension},
language = {eng},
number = {3},
pages = {377-396},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\alpha $-embedded sets and extension of mappings},
url = {http://eudml.org/doc/260651},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Karlova, Olena
TI - On $\alpha $-embedded sets and extension of mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 377
EP - 396
AB - We introduce and study $\alpha $-embedded sets and apply them to generalize the Kuratowski Extension Theorem.
LA - eng
KW - $\alpha $-embedded set; $\alpha $-separated set; extension; -embedded set; -separated set; extension
UR - http://eudml.org/doc/260651
ER -

References

top
  1. Blair R., Filter characterization of z -, C * -, and C -embeddings, Fund. Math. 90 (1976), 285–300. MR0415564
  2. Blair R., Hager A., 10.1007/BF01189255, Math. Z. 136 (1974), 41–52. Zbl0264.54011MR0385793DOI10.1007/BF01189255
  3. Corson H., 10.2307/2372929, Amer. J. Math. 81 (1959), 785–796. Zbl0095.37302MR0107222DOI10.2307/2372929
  4. HASH(0x9f826e8), Encyclopedia of General Topology, edited by K.P. Hart, Jun-iti Nagata and J.E. Vaughan, Elsevier, 2004. MR2049453
  5. Engelking R., General Topology. Revised and completed edition, Heldermann Verlag, Berlin, 1989. MR1039321
  6. Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960. Zbl0327.46040MR0116199
  7. Kalenda O., Spurný J., 10.1016/j.topol.2004.09.007, Topology Appl. 149 (2005), 195–216. Zbl1075.54011MR2130864DOI10.1016/j.topol.2004.09.007
  8. Karlova O., Baire classification of mappings which are continuous with respect to the first variable and of the α ’th functionally class with respect to the second variable, Mathematical Bulletin NTSH 2 (2005), 98–114 (in Ukrainian). 
  9. Karlova O., Classification of separately continuous functions with values in σ -metrizable spaces, Appl. Gen. Topol. 13 (2012), no. 2, 167–178. MR2998364
  10. Kombarov A., Malykhin V., On Σ -products, Dokl. Akad. Nauk SSSR 213 (1973), 774–776 (in Russian). MR0339073
  11. Kuratowski K., Topology, Vol. 1, Moscow, Mir, 1966 (in Russian). MR0259836
  12. Lukeš J., Malý J., Zajíček L., Fine Topology Methods in Real Analysis and Potential Theory, Springer, Berlin, 1986. Zbl0607.31001MR0861411
  13. Ohta H., Extension properties and the Niemytski plane, Appl. Gen. Topol. 1 (2000), no. 1, 45–60. MR1796931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.