Flows on the join of two graphs
Mathematica Bohemica (2013)
- Volume: 138, Issue: 4, page 383-396
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLukoťka, Robert, and Rollová, Edita. "Flows on the join of two graphs." Mathematica Bohemica 138.4 (2013): 383-396. <http://eudml.org/doc/260670>.
@article{Lukoťka2013,
abstract = {The join of two graphs $G$ and $H$ is a graph formed from disjoint copies of $G$ and $H$ by connecting each vertex of $G$ to each vertex of $H$. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero $3$-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges.},
author = {Lukoťka, Robert, Rollová, Edita},
journal = {Mathematica Bohemica},
keywords = {nowhere-zero flow; graph join; nowhere-zero flow; graph join},
language = {eng},
number = {4},
pages = {383-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Flows on the join of two graphs},
url = {http://eudml.org/doc/260670},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Lukoťka, Robert
AU - Rollová, Edita
TI - Flows on the join of two graphs
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 4
SP - 383
EP - 396
AB - The join of two graphs $G$ and $H$ is a graph formed from disjoint copies of $G$ and $H$ by connecting each vertex of $G$ to each vertex of $H$. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero $3$-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges.
LA - eng
KW - nowhere-zero flow; graph join; nowhere-zero flow; graph join
UR - http://eudml.org/doc/260670
ER -
References
top- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5_1, Graduate Texts in Mathematics 244 Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5_1
- Chen, J. J., Eschen, E., Lai, H.-J., Group connectivity of certain graphs, Ars Comb. 89 (2008), 141-158. (2008) Zbl1224.05267MR2456240
- Diestel, R., Graph Theory, Third ed. Graduate Texts in Mathematics 173 Springer, Berlin (2005). (2005) Zbl1074.05001MR2159259
- Fan, G., Lai, H., Xu, R., Zhang, C.-Q., Zhou, Ch., 10.1016/j.jctb.2008.02.008, J. Comb. Theory, Ser. B 98 (2008), 1325-1336. (2008) Zbl1171.05026MR2462322DOI10.1016/j.jctb.2008.02.008
- Imrich, W., Peterin, I., Špacarpan, S., Zhang, C.-Q., NZ-flows in strong products of graphs, J. Graph Theory 64 (2010), 267-276. (2010) MR2668543
- Imrich, W., Škrekovski, R., 10.1002/jgt.10100, J. Graph Theory 43 (2003), 93-98. (2003) Zbl1019.05058MR1978114DOI10.1002/jgt.10100
- Jaeger, F., Nowhere-zero flow problems, L. W. Beineke, R. J. Wilson Selected Topics in Graph Theory 3 Academic Press, San Diego, CA (1988), 71-95. (1988) Zbl0658.05034MR1205397
- Jaeger, F., Linial, N., Payan, C., Tarsi, M., 10.1016/0095-8956(92)90016-Q, J. Comb. Theory, Ser. B 56 (1992), 165-182. (1992) Zbl0824.05043MR1186753DOI10.1016/0095-8956(92)90016-Q
- Kochol, M., 10.1016/j.jctb.2009.12.001, J. Comb. Theory, Ser. B 100 (2010), 381-389. (2010) Zbl1211.05055MR2644241DOI10.1016/j.jctb.2009.12.001
- Nánásiová, M., Škoviera, M., 10.1007/s10801-008-0153-0, J. Algebr. Comb. 30 (2009), 103-111. (2009) Zbl1208.05053MR2519851DOI10.1007/s10801-008-0153-0
- Robertson, N., Seymour, P., Thomas, R., 10.1006/jctb.1997.1752, J. Comb. Theory, Ser. B 70 (1997), 166-183. (1997) Zbl0883.05055MR1441265DOI10.1006/jctb.1997.1752
- Rollová, E., Škoviera, M., 10.1016/j.ejc.2011.09.022, Eur. J. Comb. 33 (2012), 867-871. (2012) Zbl1293.05325MR2889520DOI10.1016/j.ejc.2011.09.022
- Seymour, P. D., 10.1016/0095-8956(81)90058-7, J. Comb. Theory, Ser. B 30 (1981), 130-135. (1981) Zbl0474.05028MR0615308DOI10.1016/0095-8956(81)90058-7
- Shahmohamad, H., On minimum flow number of graphs, Bull. Inst. Comb. Appl. 35 (2002), 26-36. (2002) Zbl0990.05072MR1901238
- Shu, J., Zhang, C.-Q., 10.1002/jgt.20095, J. Graph Theory 50 (2005), 79-89. (2005) Zbl1069.05040MR2157539DOI10.1002/jgt.20095
- Steffen, E., 10.1002/1097-0118(200101)36:1<24::AID-JGT3>3.0.CO;2-Q, J. Graph Theory 36 (2001), 24-34. (2001) Zbl0982.05060MR1803631DOI10.1002/1097-0118(200101)36:1<24::AID-JGT3>3.0.CO;2-Q
- Thomassen, C., 10.1016/j.jctb.2011.09.003, J. Comb. Theory, Ser. B 102 (2012), 521-529. (2012) Zbl1239.05083MR2885433DOI10.1016/j.jctb.2011.09.003
- Tutte, W. T., 10.1112/plms/s2-51.6.474, Proc. Lond. Math. Soc., II. Ser. 51 (1949), 474-483. (1949) Zbl0033.30803MR0029495DOI10.1112/plms/s2-51.6.474
- Xu, R., Zhang, C.-Q., Nowhere-zero -flows in squares of graphs, Electron. J. Comb. 10 (2003), Research paper R5, 8 pages printed version J. Comb. 10 (2003). (2003) Zbl1018.05031MR1975755
- Zhang, Z., Zheng, Y., Mamut, A., 10.1002/jgt.20211, J. Graph Theory 54 (2007), 284-292. (2007) Zbl1121.05099MR2292666DOI10.1002/jgt.20211
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.