Sample -copula of order
José M. González-Barrios; María M. Hernández-Cedillo
Kybernetika (2013)
- Volume: 49, Issue: 5, page 663-691
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGonzález-Barrios, José M., and Hernández-Cedillo, María M.. "Sample $d$-copula of order $m$." Kybernetika 49.5 (2013): 663-691. <http://eudml.org/doc/260673>.
@article{González2013,
abstract = {In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.},
author = {González-Barrios, José M., Hernández-Cedillo, María M.},
journal = {Kybernetika},
keywords = {$d$-copulas; fractal copulas; sample $d$-copulas of order $m$; $d$-copulas; fractal copulas; sample $d$-copulas of order $m$},
language = {eng},
number = {5},
pages = {663-691},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sample $d$-copula of order $m$},
url = {http://eudml.org/doc/260673},
volume = {49},
year = {2013},
}
TY - JOUR
AU - González-Barrios, José M.
AU - Hernández-Cedillo, María M.
TI - Sample $d$-copula of order $m$
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 5
SP - 663
EP - 691
AB - In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.
LA - eng
KW - $d$-copulas; fractal copulas; sample $d$-copulas of order $m$; $d$-copulas; fractal copulas; sample $d$-copulas of order $m$
UR - http://eudml.org/doc/260673
ER -
References
top- Alsina, C., Frank, M. J., Schweizer, B., Associative Functions: Triangular Norms And Copulas., World Scientific Publishing Co., Singapore 2006. Zbl1100.39023MR2222258
- Berger, J. O., Bernardo, J. M., 10.1093/biomet/79.1.25, Biometrika 79 (1992), 1, 25-37. Zbl0763.62014MR1158515DOI10.1093/biomet/79.1.25
- Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T., Copulas for Finance. A Reading Quide and Some Applications., Groupe de recherche opérationnelle, Crédit Lyonnais, Paris 2000.
- Cressie, N., Read, T. R. C., Multinomial goodness-of-fit tests., J. Roy. Statist. Soc., Ser. B 46 (1984), 3, 440-464. Zbl0571.62017MR0790631
- Cuculescu, I., Theodorescu, R., Copulas: Diagonals, tracks., Rev. Roumaine Math. Pures Appl. 46 (2001), 6, 731-742. Zbl1032.60009MR1929521
- Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J., 10.1007/s00009-010-0073-9, Mediterr. J. Math. 8 (2011), 431-450. MR2824591DOI10.1007/s00009-010-0073-9
- Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J., 10.1016/j.jmaa.2011.08.017, J. Math. Anal. Appl. 386 (2012), 528-541. MR2834765DOI10.1016/j.jmaa.2011.08.017
- Deheuvels, P., La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance., Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274-292. Zbl0422.62037MR0573609
- Durante, F., Quesada-Molina, J. J., Úbeda-Flores, M., 10.1016/j.ins.2007.07.019, Inform. Sci. 177 (2007), 5715-5724. Zbl1132.68761MR2362216DOI10.1016/j.ins.2007.07.019
- Durante, F., Fernández-Sánchez, J., 10.1016/j.spl.2010.08.008, Statist. Probab. Lett. 80 (2010), 1827-1834. MR2734248DOI10.1016/j.spl.2010.08.008
- Durante, F., Fernández-Sánchez, J., Sempi, C., 10.1016/j.na.2011.09.006, Nonlinear Anal. 75 (2012), 2, 769-774. Zbl1229.62062MR2847456DOI10.1016/j.na.2011.09.006
- Durante, F., Fernández-Sánchez, J., Sempi, C., 10.1016/j.fss.2012.04.005, Fuzzy Sets and Systems 211 (2013), 120-122. MR2991801DOI10.1016/j.fss.2012.04.005
- Fermanian, J. D., Radulović, D., Wegcamp, M., 10.3150/bj/1099579158, Bernoulli 10 (2004), 5, 847-860. MR2093613DOI10.3150/bj/1099579158
- Fernández-Sánchez, J., Nelsen, R. B., Úbeda-Flores, M., 10.1016/j.spl.2011.04.004, Statist. Probab. Lett. 81 (2011), 1365-1369. Zbl1219.62086MR2811851DOI10.1016/j.spl.2011.04.004
- Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A., 10.1016/j.insmatheco.2004.12.004, Insurance Math. Econom. 37 (2005), 42-48. Zbl1098.60018MR2156595DOI10.1016/j.insmatheco.2004.12.004
- Genest, C., Rémillard, B., Beaudoin, D., 10.1016/j.insmatheco.2007.10.005, Insurance Math. Econom. 44 (2009), 199-213. Zbl1161.91416MR2517885DOI10.1016/j.insmatheco.2007.10.005
- Hernández-Cedillo, M. M., Topics on Multivariate Copulas and Applications., Ph.D. Thesis, Universidad Nacional Autónoma de México 2013, preprint.
- Hofert, M., Kojadinovic, I., Maechler, M., Yan, J., copula: Multivariate Dependence with Copulas. R package version 0.999-5., http://CRAN.R-project.org/package=copula, 2012.
- Hogg, R. H., Craig, A. T., Introduction to Mathematical Statistics. Fourth edition., Collier Macmillan International Eds., New York-London 1978. MR0467974
- Jaworski, P., 10.1016/j.ins.2008.09.006, Inform. Sci. 179 (2009), 2863-2871. Zbl1171.62332MR2547755DOI10.1016/j.ins.2008.09.006
- Mahmoud, H. M., 10.1201/9781420059847.ch3, Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York 2008. Zbl1149.60005MR2435823DOI10.1201/9781420059847.ch3
- Mai, J. F., Scherer, M., Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications., Series in Quantitative Finance 4, Imperial College Press, London 2012. MR2906392
- Marcus, M., 10.2307/2309679, Amer. Math. Monthly 67 (1960), 215-221. MR0118732DOI10.2307/2309679
- Mesiar, R., Sempi, C., 10.1007/s00010-010-0013-6, Aequat. Math. 79, (2010), 1-2, 39-52. MR2640277DOI10.1007/s00010-010-0013-6
- Mikusiński, P., Taylor, M. D., 10.1007/s00184-009-0259-y, Metrika 72 (2010), 385-414. Zbl1197.62050MR2746583DOI10.1007/s00184-009-0259-y
- Nelsen, R. B., An Introduction to Copulas., Lecture Notes in Statist. 139, second edition, Springer, New York 2006. Zbl1152.62030MR2197664
- Read, T. R. C., Cressie, N., Goodness-of-fit Statistics for Discrete Multivariate Data., Springer Series in Statist., Springer, New York 1988. Zbl0663.62065MR0955054
- Rodríguez-Lallena, J. A., Úbeda-Flores, M., 10.1016/S0167-7152(03)00129-9, Statist. Probab. Lett. 64 (2003), 41-50. Zbl1113.62330MR1995808DOI10.1016/S0167-7152(03)00129-9
- Rychlik, T., 10.1016/0047-259X(94)80003-E, J. Multivariate Anal. 48 (1994), 31-42. MR1256833DOI10.1016/0047-259X(94)80003-E
- Sherman, S., 10.2307/2372529, Amer. J. Math. 77 (1955), 245-246. Zbl0064.13204MR0067840DOI10.2307/2372529
- Siburg, K. F., Stoimenov, P. A., 10.1080/03610920802074844, Comm. Statist. Theory and Methods. 37 (2008), 3124-3134. MR2467756DOI10.1080/03610920802074844
- Sklar, A., Fonctions de répartition à dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR0125600
- Trutschnig, W., Fernández-Sánchez, J., 10.1016/j.jspi.2012.06.012, J. Statist. Plan. Infer. 142 (2012), 3086-3096. MR2956795DOI10.1016/j.jspi.2012.06.012
- Trutschnig, W., Idempotent copulas with fractal support., Adv. Comp. Intel. 298, (2012), 3, 161-170. Zbl1252.37073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.