Sample d -copula of order m

José M. González-Barrios; María M. Hernández-Cedillo

Kybernetika (2013)

  • Volume: 49, Issue: 5, page 663-691
  • ISSN: 0023-5954

Abstract

top
In this paper we analyze the construction of d -copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample d -copula of order m with m 2 , the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample d -copula is the fact that it is already an approximating d -copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample d -copula of order n . These sample d -copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.

How to cite

top

González-Barrios, José M., and Hernández-Cedillo, María M.. "Sample $d$-copula of order $m$." Kybernetika 49.5 (2013): 663-691. <http://eudml.org/doc/260673>.

@article{González2013,
abstract = {In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.},
author = {González-Barrios, José M., Hernández-Cedillo, María M.},
journal = {Kybernetika},
keywords = {$d$-copulas; fractal copulas; sample $d$-copulas of order $m$; $d$-copulas; fractal copulas; sample $d$-copulas of order $m$},
language = {eng},
number = {5},
pages = {663-691},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sample $d$-copula of order $m$},
url = {http://eudml.org/doc/260673},
volume = {49},
year = {2013},
}

TY - JOUR
AU - González-Barrios, José M.
AU - Hernández-Cedillo, María M.
TI - Sample $d$-copula of order $m$
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 5
SP - 663
EP - 691
AB - In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.
LA - eng
KW - $d$-copulas; fractal copulas; sample $d$-copulas of order $m$; $d$-copulas; fractal copulas; sample $d$-copulas of order $m$
UR - http://eudml.org/doc/260673
ER -

References

top
  1. Alsina, C., Frank, M. J., Schweizer, B., Associative Functions: Triangular Norms And Copulas., World Scientific Publishing Co., Singapore 2006. Zbl1100.39023MR2222258
  2. Berger, J. O., Bernardo, J. M., 10.1093/biomet/79.1.25, Biometrika 79 (1992), 1, 25-37. Zbl0763.62014MR1158515DOI10.1093/biomet/79.1.25
  3. Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T., Copulas for Finance. A Reading Quide and Some Applications., Groupe de recherche opérationnelle, Crédit Lyonnais, Paris 2000. 
  4. Cressie, N., Read, T. R. C., Multinomial goodness-of-fit tests., J. Roy. Statist. Soc., Ser. B 46 (1984), 3, 440-464. Zbl0571.62017MR0790631
  5. Cuculescu, I., Theodorescu, R., Copulas: Diagonals, tracks., Rev. Roumaine Math. Pures Appl. 46 (2001), 6, 731-742. Zbl1032.60009MR1929521
  6. Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J., 10.1007/s00009-010-0073-9, Mediterr. J. Math. 8 (2011), 431-450. MR2824591DOI10.1007/s00009-010-0073-9
  7. Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J., 10.1016/j.jmaa.2011.08.017, J. Math. Anal. Appl. 386 (2012), 528-541. MR2834765DOI10.1016/j.jmaa.2011.08.017
  8. Deheuvels, P., La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance., Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274-292. Zbl0422.62037MR0573609
  9. Durante, F., Quesada-Molina, J. J., Úbeda-Flores, M., 10.1016/j.ins.2007.07.019, Inform. Sci. 177 (2007), 5715-5724. Zbl1132.68761MR2362216DOI10.1016/j.ins.2007.07.019
  10. Durante, F., Fernández-Sánchez, J., 10.1016/j.spl.2010.08.008, Statist. Probab. Lett. 80 (2010), 1827-1834. MR2734248DOI10.1016/j.spl.2010.08.008
  11. Durante, F., Fernández-Sánchez, J., Sempi, C., 10.1016/j.na.2011.09.006, Nonlinear Anal. 75 (2012), 2, 769-774. Zbl1229.62062MR2847456DOI10.1016/j.na.2011.09.006
  12. Durante, F., Fernández-Sánchez, J., Sempi, C., 10.1016/j.fss.2012.04.005, Fuzzy Sets and Systems 211 (2013), 120-122. MR2991801DOI10.1016/j.fss.2012.04.005
  13. Fermanian, J. D., Radulović, D., Wegcamp, M., 10.3150/bj/1099579158, Bernoulli 10 (2004), 5, 847-860. MR2093613DOI10.3150/bj/1099579158
  14. Fernández-Sánchez, J., Nelsen, R. B., Úbeda-Flores, M., 10.1016/j.spl.2011.04.004, Statist. Probab. Lett. 81 (2011), 1365-1369. Zbl1219.62086MR2811851DOI10.1016/j.spl.2011.04.004
  15. Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A., 10.1016/j.insmatheco.2004.12.004, Insurance Math. Econom. 37 (2005), 42-48. Zbl1098.60018MR2156595DOI10.1016/j.insmatheco.2004.12.004
  16. Genest, C., Rémillard, B., Beaudoin, D., 10.1016/j.insmatheco.2007.10.005, Insurance Math. Econom. 44 (2009), 199-213. Zbl1161.91416MR2517885DOI10.1016/j.insmatheco.2007.10.005
  17. Hernández-Cedillo, M. M., Topics on Multivariate Copulas and Applications., Ph.D. Thesis, Universidad Nacional Autónoma de México 2013, preprint. 
  18. Hofert, M., Kojadinovic, I., Maechler, M., Yan, J., copula: Multivariate Dependence with Copulas. R package version 0.999-5., http://CRAN.R-project.org/package=copula, 2012. 
  19. Hogg, R. H., Craig, A. T., Introduction to Mathematical Statistics. Fourth edition., Collier Macmillan International Eds., New York-London 1978. MR0467974
  20. Jaworski, P., 10.1016/j.ins.2008.09.006, Inform. Sci. 179 (2009), 2863-2871. Zbl1171.62332MR2547755DOI10.1016/j.ins.2008.09.006
  21. Mahmoud, H. M., 10.1201/9781420059847.ch3, Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York 2008. Zbl1149.60005MR2435823DOI10.1201/9781420059847.ch3
  22. Mai, J. F., Scherer, M., Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications., Series in Quantitative Finance 4, Imperial College Press, London 2012. MR2906392
  23. Marcus, M., 10.2307/2309679, Amer. Math. Monthly 67 (1960), 215-221. MR0118732DOI10.2307/2309679
  24. Mesiar, R., Sempi, C., 10.1007/s00010-010-0013-6, Aequat. Math. 79, (2010), 1-2, 39-52. MR2640277DOI10.1007/s00010-010-0013-6
  25. Mikusiński, P., Taylor, M. D., 10.1007/s00184-009-0259-y, Metrika 72 (2010), 385-414. Zbl1197.62050MR2746583DOI10.1007/s00184-009-0259-y
  26. Nelsen, R. B., An Introduction to Copulas., Lecture Notes in Statist. 139, second edition, Springer, New York 2006. Zbl1152.62030MR2197664
  27. Read, T. R. C., Cressie, N., Goodness-of-fit Statistics for Discrete Multivariate Data., Springer Series in Statist., Springer, New York 1988. Zbl0663.62065MR0955054
  28. Rodríguez-Lallena, J. A., Úbeda-Flores, M., 10.1016/S0167-7152(03)00129-9, Statist. Probab. Lett. 64 (2003), 41-50. Zbl1113.62330MR1995808DOI10.1016/S0167-7152(03)00129-9
  29. Rychlik, T., 10.1016/0047-259X(94)80003-E, J. Multivariate Anal. 48 (1994), 31-42. MR1256833DOI10.1016/0047-259X(94)80003-E
  30. Sherman, S., 10.2307/2372529, Amer. J. Math. 77 (1955), 245-246. Zbl0064.13204MR0067840DOI10.2307/2372529
  31. Siburg, K. F., Stoimenov, P. A., 10.1080/03610920802074844, Comm. Statist. Theory and Methods. 37 (2008), 3124-3134. MR2467756DOI10.1080/03610920802074844
  32. Sklar, A., Fonctions de répartition à n dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR0125600
  33. Trutschnig, W., Fernández-Sánchez, J., 10.1016/j.jspi.2012.06.012, J. Statist. Plan. Infer. 142 (2012), 3086-3096. MR2956795DOI10.1016/j.jspi.2012.06.012
  34. Trutschnig, W., Idempotent copulas with fractal support., Adv. Comp. Intel. 298, (2012), 3, 161-170. Zbl1252.37073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.