Images of some functions and functional spaces under the Dunkl-Hermite semigroup

Néjib Ben Salem; Walid Nefzi

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 3, page 345-365
  • ISSN: 0010-2628

Abstract

top
We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, 𝒮 ( ) and L α p ( ) , 1 < p < , under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.

How to cite

top

Ben Salem, Néjib, and Nefzi, Walid. "Images of some functions and functional spaces under the Dunkl-Hermite semigroup." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 345-365. <http://eudml.org/doc/260683>.

@article{BenSalem2013,
abstract = {We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, $\mathcal \{S\}(\mathbb \{R\})$ and $L^p_\alpha (\mathbb \{R\})$, $1<p<\infty $, under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.},
author = {Ben Salem, Néjib, Nefzi, Walid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-Sobolev space; Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-Sobolev space},
language = {eng},
number = {3},
pages = {345-365},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Images of some functions and functional spaces under the Dunkl-Hermite semigroup},
url = {http://eudml.org/doc/260683},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Ben Salem, Néjib
AU - Nefzi, Walid
TI - Images of some functions and functional spaces under the Dunkl-Hermite semigroup
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 345
EP - 365
AB - We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, $\mathcal {S}(\mathbb {R})$ and $L^p_\alpha (\mathbb {R})$, $1<p<\infty $, under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.
LA - eng
KW - Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-Sobolev space; Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-Sobolev space
UR - http://eudml.org/doc/260683
ER -

References

top
  1. Ben Salem N., Nefzi W., Inversion of the Dunkl-Hermite semigroup, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 287–301. MR2893456
  2. Ben Salem N., Samaali T., Hilbert transforms associated with Dunkl-Hermite polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 037. Zbl1162.42002MR2506175
  3. Dunkl C.F., 10.4153/CJM-1991-069-8, Canad. J. Math. 43 (1991), 1213–1227. Zbl0827.33010MR1145585DOI10.4153/CJM-1991-069-8
  4. Erdely A. et al., Higher Transcendental Functions, vol 2, McGraw-Hill, New-York, 1953. 
  5. de Jeu M.F.E., 10.1007/BF01244305, Invent. Math. 113 (1993), 147–162. Zbl1116.33016MR1223227DOI10.1007/BF01244305
  6. Lebedev N.N., Special Functions and their Applications, translated by R.A. Silverman, Dover, New York, 1972. Zbl0271.33001MR0350075
  7. Maalaoui R., Trimèche K., 10.1080/10652469.2011.577427, Integral Transforms Spec. Funct. 23 (2012), no. 3, 191–206. MR2891463DOI10.1080/10652469.2011.577427
  8. Radha R., Thangavelu S., 10.1016/j.jmaa.2009.01.021, J. Math. Anal. Appl. 354 (2009), 564–574. Zbl1168.43005MR2515237DOI10.1016/j.jmaa.2009.01.021
  9. Radha R., Venku Naidu D., Image of L p ( n ) under the Hermite semigroup, . Int. J. Math. Math. Sci. (2008), Art. ID 287218, 13 pages. MR2482046
  10. Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator calculus, in Operator theory: Advances and Applications, Vol. 73, Birkhäuser, Basel, 1994, pp. 369–396. MR1320555
  11. Rösler M., 10.1007/s002200050307, Comm. Math. Phys. 192 (1998), no. 3, 519–542. MR1620515DOI10.1007/s002200050307
  12. Rösler M., Voit M., 10.1006/aama.1998.0609, Adv. Appl. Math. 21 (1998), 575–643. Zbl0919.60072MR1652182DOI10.1006/aama.1998.0609
  13. Trimèche K., 10.1080/10652460212888, Integral Transforms Spec. Funct. 13 (2002), 17–38. Zbl1030.44004MR1914125DOI10.1080/10652460212888
  14. Trimèche K., 10.1007/s00041-005-5073-y, J. Fourier Anal. Appl. 12 (2006), 517–542. MR2267633DOI10.1007/s00041-005-5073-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.