Totally reflexive modules with respect to a semidualizing bimodule
Zhen Zhang; Xiaosheng Zhu; Xiaoguang Yan
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 385-402
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Zhen, Zhu, Xiaosheng, and Yan, Xiaoguang. "Totally reflexive modules with respect to a semidualizing bimodule." Czechoslovak Mathematical Journal 63.2 (2013): 385-402. <http://eudml.org/doc/260690>.
@article{Zhang2013,
abstract = {Let $S$ and $R$ be two associative rings, let $ _\{S\}C_\{R\}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_\{S\}C_\{R\}$ and we give a characterization of the class of the totally $C_\{R\}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_\{R\}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.},
author = {Zhang, Zhen, Zhu, Xiaosheng, Yan, Xiaoguang},
journal = {Czechoslovak Mathematical Journal},
keywords = {semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope; semidualizing bimodules; totally reflexive modules; Bass classes; precovers; preenvelopes; projective resolutions; projective dimension},
language = {eng},
number = {2},
pages = {385-402},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Totally reflexive modules with respect to a semidualizing bimodule},
url = {http://eudml.org/doc/260690},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Zhang, Zhen
AU - Zhu, Xiaosheng
AU - Yan, Xiaoguang
TI - Totally reflexive modules with respect to a semidualizing bimodule
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 385
EP - 402
AB - Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
LA - eng
KW - semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope; semidualizing bimodules; totally reflexive modules; Bass classes; precovers; preenvelopes; projective resolutions; projective dimension
UR - http://eudml.org/doc/260690
ER -
References
top- Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L., Anneaux de Gorenstein, et Torsion en Algèbre Commutative, Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French. (1967)
- Auslander, M., Bridger, M., Stable Module Theory, Mem. Am. Math. Soc. 94 (1969). (1969) Zbl0204.36402MR0269685
- Araya, T., Takahashi, R., Yoshino, Y., 10.1215/kjm/1250281991, J. Math. Kyoto Univ. 45 (2005), 287-306. (2005) Zbl1096.16001MR2161693DOI10.1215/kjm/1250281991
- Christensen, L. W., 10.1007/BFb0103984, Lecture Notes in Mathematics 1747, Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103984
- Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
- Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146
- Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) MR0327752DOI10.7146/math.scand.a-11434
- Golod, E. S., G-dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 (1984), 62-66. (1984) Zbl0577.13008MR0752933
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) MR2203625DOI10.1016/j.jpaa.2005.07.010
- Holm, H., Jørgensen, P., 10.1216/JCA-2009-1-4-621, J. Commut. Algebra 1 (2009), 621-633. (2009) MR2575834DOI10.1216/JCA-2009-1-4-621
- Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
- Mantese, F., Reiten, I., 10.1016/j.jalgebra.2004.03.023, J. Algebra 278 (2004), 532-552. (2004) Zbl1075.16006MR2071651DOI10.1016/j.jalgebra.2004.03.023
- Sather-Wagstaff, S., 10.1215/ijm/1258735335, Ill. J. Math. 51 255-285 (2007). (2007) Zbl1127.13007MR2346197DOI10.1215/ijm/1258735335
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 403-428 (2011). (2011) MR2785915DOI10.1007/s10468-009-9195-9
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1016/j.jalgebra.2010.07.007, J. Algebra 324 (2010), 2336-2368. (2010) Zbl1207.13009MR2684143DOI10.1016/j.jalgebra.2010.07.007
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s00209-009-0480-4, Math. Z. 264 (2010), 571-600. (2010) Zbl1190.13007MR2591820DOI10.1007/s00209-009-0480-4
- Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
- Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). (1974) Zbl0296.13005MR0498530
- Wakamatsu, T., 10.1016/j.jalgebra.2003.12.008, J. Algebra 275 (2004), 3-39. (2004) Zbl1076.16006MR2047438DOI10.1016/j.jalgebra.2003.12.008
- White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra 2 (2010), 111-137. (2010) MR2607104DOI10.1216/JCA-2010-2-1-111
- Yassemi, S., -dimension, Math. Scand. 77 (1995), 161-174. (1995) Zbl0864.13010MR1379262
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.