Totally reflexive modules with respect to a semidualizing bimodule

Zhen Zhang; Xiaosheng Zhu; Xiaoguang Yan

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 385-402
  • ISSN: 0011-4642

Abstract

top
Let S and R be two associative rings, let S C R be a semidualizing ( S , R ) -bimodule. We introduce and investigate properties of the totally reflexive module with respect to S C R and we give a characterization of the class of the totally C R -reflexive modules over any ring R . Moreover, we show that the totally C R -reflexive module with finite projective dimension is exactly the finitely generated projective right R -module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.

How to cite

top

Zhang, Zhen, Zhu, Xiaosheng, and Yan, Xiaoguang. "Totally reflexive modules with respect to a semidualizing bimodule." Czechoslovak Mathematical Journal 63.2 (2013): 385-402. <http://eudml.org/doc/260690>.

@article{Zhang2013,
abstract = {Let $S$ and $R$ be two associative rings, let $ _\{S\}C_\{R\}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_\{S\}C_\{R\}$ and we give a characterization of the class of the totally $C_\{R\}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_\{R\}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.},
author = {Zhang, Zhen, Zhu, Xiaosheng, Yan, Xiaoguang},
journal = {Czechoslovak Mathematical Journal},
keywords = {semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope; semidualizing bimodules; totally reflexive modules; Bass classes; precovers; preenvelopes; projective resolutions; projective dimension},
language = {eng},
number = {2},
pages = {385-402},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Totally reflexive modules with respect to a semidualizing bimodule},
url = {http://eudml.org/doc/260690},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Zhang, Zhen
AU - Zhu, Xiaosheng
AU - Yan, Xiaoguang
TI - Totally reflexive modules with respect to a semidualizing bimodule
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 385
EP - 402
AB - Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
LA - eng
KW - semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope; semidualizing bimodules; totally reflexive modules; Bass classes; precovers; preenvelopes; projective resolutions; projective dimension
UR - http://eudml.org/doc/260690
ER -

References

top
  1. Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L., Anneaux de Gorenstein, et Torsion en Algèbre Commutative, Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French. (1967) 
  2. Auslander, M., Bridger, M., Stable Module Theory, Mem. Am. Math. Soc. 94 (1969). (1969) Zbl0204.36402MR0269685
  3. Araya, T., Takahashi, R., Yoshino, Y., 10.1215/kjm/1250281991, J. Math. Kyoto Univ. 45 (2005), 287-306. (2005) Zbl1096.16001MR2161693DOI10.1215/kjm/1250281991
  4. Christensen, L. W., 10.1007/BFb0103984, Lecture Notes in Mathematics 1747, Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103984
  5. Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
  6. Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146
  7. Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) MR0327752DOI10.7146/math.scand.a-11434
  8. Golod, E. S., G-dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 (1984), 62-66. (1984) Zbl0577.13008MR0752933
  9. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  10. Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) MR2203625DOI10.1016/j.jpaa.2005.07.010
  11. Holm, H., Jørgensen, P., 10.1216/JCA-2009-1-4-621, J. Commut. Algebra 1 (2009), 621-633. (2009) MR2575834DOI10.1216/JCA-2009-1-4-621
  12. Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
  13. Mantese, F., Reiten, I., 10.1016/j.jalgebra.2004.03.023, J. Algebra 278 (2004), 532-552. (2004) Zbl1075.16006MR2071651DOI10.1016/j.jalgebra.2004.03.023
  14. Sather-Wagstaff, S., 10.1215/ijm/1258735335, Ill. J. Math. 51 255-285 (2007). (2007) Zbl1127.13007MR2346197DOI10.1215/ijm/1258735335
  15. Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 403-428 (2011). (2011) MR2785915DOI10.1007/s10468-009-9195-9
  16. Sather-Wagstaff, S., Sharif, T., White, D., 10.1016/j.jalgebra.2010.07.007, J. Algebra 324 (2010), 2336-2368. (2010) Zbl1207.13009MR2684143DOI10.1016/j.jalgebra.2010.07.007
  17. Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s00209-009-0480-4, Math. Z. 264 (2010), 571-600. (2010) Zbl1190.13007MR2591820DOI10.1007/s00209-009-0480-4
  18. Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
  19. Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). (1974) Zbl0296.13005MR0498530
  20. Wakamatsu, T., 10.1016/j.jalgebra.2003.12.008, J. Algebra 275 (2004), 3-39. (2004) Zbl1076.16006MR2047438DOI10.1016/j.jalgebra.2003.12.008
  21. White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra 2 (2010), 111-137. (2010) MR2607104DOI10.1216/JCA-2010-2-1-111
  22. Yassemi, S., G -dimension, Math. Scand. 77 (1995), 161-174. (1995) Zbl0864.13010MR1379262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.