Solvability of a generalized third-order left focal problem at resonance in Banach spaces
Mathematica Bohemica (2013)
- Volume: 138, Issue: 4, page 361-382
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topZhang, Youwei. "Solvability of a generalized third-order left focal problem at resonance in Banach spaces." Mathematica Bohemica 138.4 (2013): 361-382. <http://eudml.org/doc/260695>.
@article{Zhang2013,
abstract = {This paper deals with the generalized nonlinear third-order left focal problem at resonance \[ \{\left\lbrace \begin\{array\}\{ll\} (p(t)u^\{\prime \prime \}(t))^\{\prime \}-q(t)u(t)=f(t, u(t), u^\{\prime \}(t), u^\{\prime \prime \}(t)), \quad t\in \mathopen ]t\_0, T[, m(u(t\_0), u^\{\prime \prime \}(t\_0))=0, n(u(T), u^\{\prime \}(T))=0, l(u(\xi ), u^\{\prime \}(\xi ), u^\{\prime \prime \}(\xi ))=0, \end\{array\}\right.\} \]
where the nonlinear term is a Carathéodory function and contains explicitly the first and second-order derivatives of the unknown function. The boundary conditions that we study are quite general, involve a linearity and include, as particular cases, Sturm-Liouville boundary conditions. Under certain growth conditions on the nonlinearity, we establish the existence of the nontrivial solutions by using the topological degree technique as well as some recent generalizations of this technique. Our results are generalizations and extensions of the results of several authors. An application is included to illustrate the results obtained.},
author = {Zhang, Youwei},
journal = {Mathematica Bohemica},
keywords = {Fredholm operator; coincidence degree; left focal problem; nontrivial solution; resonance; Fredholm operator; coincidence degree; left focal problem; resonance},
language = {eng},
number = {4},
pages = {361-382},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a generalized third-order left focal problem at resonance in Banach spaces},
url = {http://eudml.org/doc/260695},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Zhang, Youwei
TI - Solvability of a generalized third-order left focal problem at resonance in Banach spaces
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 4
SP - 361
EP - 382
AB - This paper deals with the generalized nonlinear third-order left focal problem at resonance \[ {\left\lbrace \begin{array}{ll} (p(t)u^{\prime \prime }(t))^{\prime }-q(t)u(t)=f(t, u(t), u^{\prime }(t), u^{\prime \prime }(t)), \quad t\in \mathopen ]t_0, T[, m(u(t_0), u^{\prime \prime }(t_0))=0, n(u(T), u^{\prime }(T))=0, l(u(\xi ), u^{\prime }(\xi ), u^{\prime \prime }(\xi ))=0, \end{array}\right.} \]
where the nonlinear term is a Carathéodory function and contains explicitly the first and second-order derivatives of the unknown function. The boundary conditions that we study are quite general, involve a linearity and include, as particular cases, Sturm-Liouville boundary conditions. Under certain growth conditions on the nonlinearity, we establish the existence of the nontrivial solutions by using the topological degree technique as well as some recent generalizations of this technique. Our results are generalizations and extensions of the results of several authors. An application is included to illustrate the results obtained.
LA - eng
KW - Fredholm operator; coincidence degree; left focal problem; nontrivial solution; resonance; Fredholm operator; coincidence degree; left focal problem; resonance
UR - http://eudml.org/doc/260695
ER -
References
top- Agarwal, R. P., Focal Boundary Value Problems for Differential and Difference Equations, Mathematics and its Applications 436 Kluwer Academic Publishers, Dordrecht (1998). (1998) Zbl0914.34001MR1619877
- Anderson, D. R., 10.1016/S0898-1221(03)80157-8, Comput. Math. Appl. 45 (2003), 861-871. (2003) Zbl1054.39010MR2000563DOI10.1016/S0898-1221(03)80157-8
- Anderson, D. R., Davis, J. M., 10.1006/jmaa.2001.7756, J. Math. Anal. Appl. 267 (2002), 135-157. (2002) Zbl1003.34021MR1886821DOI10.1006/jmaa.2001.7756
- Gupta, C. P., 10.1007/BF03322257, Result. Math. 28 (1995), 270-276. (1995) MR1356893DOI10.1007/BF03322257
- Kosmatov, N., 10.1016/j.na.2007.01.038, Nonlinear Anal., Theory Methods Appl. 68 (2008), 2158-2171. (2008) Zbl1138.34006MR2398639DOI10.1016/j.na.2007.01.038
- Liao, S. J., 10.1115/1.2894068, J. Appl. Mech. 59 (1992), 970-975. (1992) Zbl0769.70017DOI10.1115/1.2894068
- Liu, B., Yu, J. S., 10.1016/S0096-3003(01)00036-4, Appl. Math. Comput. 129 (2002), 119-143. (2002) Zbl1054.34033MR1897323DOI10.1016/S0096-3003(01)00036-4
- Liu, Z., Debnath, L., Kang, S., 10.1016/j.camwa.2007.03.021, Comput. Math. Appl. 55 (2008), 356-367. (2008) Zbl1155.34312MR2384152DOI10.1016/j.camwa.2007.03.021
- Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Regional Conference Series in Mathematics 40. AMS, Providence, RI (1979). (1979) Zbl0414.34025MR0525202
- Mawhin, J., Ruiz, D., 10.12775/TMNA.2002.021, Topol. Methods Nonlinear Anal. 20 (2002), 1-14. (2002) Zbl1018.34016MR1940526DOI10.12775/TMNA.2002.021
- Nasr, H., Hassanien, I. A., El-Hawary, H. M., 10.1080/00207169008803843, Int. J. Comput. Math. 33 (1990), 127-132. (1990) Zbl0756.76058DOI10.1080/00207169008803843
- Nieto, Juan J., 10.1090/S0002-9939-1985-0787888-1, Proc. Am. Math. Soc. 94 (1985), 433-436. (1985) Zbl0585.47050MR0787888DOI10.1090/S0002-9939-1985-0787888-1
- Rachůnková, I., Staněk, S., 10.1016/0362-546X(95)00060-9, Nonlinear Anal., Theory Methods Appl. 27 (1996), 271-285. (1996) Zbl0853.34062MR1391437DOI10.1016/0362-546X(95)00060-9
- Santanilla, J., 10.1016/0022-247X(85)90053-8, J. Math. Anal. Appl. 105 (1985), 357-371. (1985) MR0778471DOI10.1016/0022-247X(85)90053-8
- Wong, P. J. Y., 10.1016/j.jmaa.2005.10.016, J. Math. Anal. Appl. 323 (2006), 100-118. (2006) Zbl1107.34014MR2261154DOI10.1016/j.jmaa.2005.10.016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.