Memoryless solution to the optimal control problem for linear systems with delayed input
Francesco Carravetta; Pasquale Palumbo; Pierdomenico Pepe
Kybernetika (2013)
- Volume: 49, Issue: 4, page 568-589
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCarravetta, Francesco, Palumbo, Pasquale, and Pepe, Pierdomenico. "Memoryless solution to the optimal control problem for linear systems with delayed input." Kybernetika 49.4 (2013): 568-589. <http://eudml.org/doc/260709>.
@article{Carravetta2013,
abstract = {This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.},
author = {Carravetta, Francesco, Palumbo, Pasquale, Pepe, Pierdomenico},
journal = {Kybernetika},
keywords = {time-delay systems; optimal control; stability; time-delay systems; optimal control; stability},
language = {eng},
number = {4},
pages = {568-589},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Memoryless solution to the optimal control problem for linear systems with delayed input},
url = {http://eudml.org/doc/260709},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Carravetta, Francesco
AU - Palumbo, Pasquale
AU - Pepe, Pierdomenico
TI - Memoryless solution to the optimal control problem for linear systems with delayed input
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 568
EP - 589
AB - This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.
LA - eng
KW - time-delay systems; optimal control; stability; time-delay systems; optimal control; stability
UR - http://eudml.org/doc/260709
ER -
References
top- Basin, M., New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems., Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. Zbl1160.93001MR2462136
- Basin, M., Martanez-Zniga, R., 10.1002/rnc.917, Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. MR2058560DOI10.1002/rnc.917
- Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P., 10.1002/rnc.995, Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. Zbl1100.93012MR2139465DOI10.1002/rnc.995
- Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R., 10.1016/j.jfranklin.2003.12.004, J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. Zbl1073.93055MR2054476DOI10.1016/j.jfranklin.2003.12.004
- Boukas, E.-K., Liu, Z.-K., Deterministic and Stochastic Time Delay Systems., Birkhauser, Boston 2002. Zbl1056.93001
- Carravetta, F., Palumbo, P., Pepe, P., Quadratic optimal control of linear systems with time-varying input delay., In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.
- Carravetta, F., Palumbo, P., Pepe, P., Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input, In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.
- Chang, Y. P., Tsai, J. S. H., Shieh, L. S., Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints., IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.
- Chopra, N., Berestesky, P., Spong, M. W., 10.1109/TCST.2007.903397, IEEE Trans. Control Systems Technol. 16 (2008), 304-313. DOI10.1109/TCST.2007.903397
- Chyung, D. H., 10.1109/TAC.1969.1099152, IEEE Trans. Automat. Control 14 (1969), 196-197. MR0243873DOI10.1109/TAC.1969.1099152
- Delfour, M. C., 10.1137/0324053, SIAM J. Control Optim. 24 (1986), 835-883. Zbl0606.93037MR0854061DOI10.1137/0324053
- Fridman, E., 10.1016/S0167-6911(01)00114-1, Systems Control Lett. 43 (2001), 4, 309-319. Zbl0974.93028MR2008812DOI10.1016/S0167-6911(01)00114-1
- Fridman, E., 10.1016/S0022-247X(02)00202-0, J. Math. Anal. Appl. 273 (2002), 24-44. Zbl1032.34069MR1933013DOI10.1016/S0022-247X(02)00202-0
- Gu, K., Kharitonov, V. L., Chen, J., Stability of Time Delay Systems., Birkhauser, Boston 2003. Zbl1039.34067
- Ichikawa, A., 10.1137/0320048, SIAM J. Control Optim. 5 (1982), 645-668. Zbl0495.49006MR0667646DOI10.1137/0320048
- Germani, A., Manes, C., Pepe, P., Implementation of an LQG control scheme for linear systems with delayed feedback action., In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.
- Germani, A., Manes, C., Pepe, P., 10.1137/S0363012998337461, SIAM J. Control Optim. 39 (2000), 4, 1233-1295. Zbl1020.93030MR1814274DOI10.1137/S0363012998337461
- Kuang, Y., Delay Differential Equations with Applications in Population Dynamics., Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. Zbl0777.34002MR1218880
- Kojima, A., Ishijima, S., Formulas on preview and delayed control., In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.
- Krstic, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems., Birkauser, Boston 2009. Zbl1181.93003MR2553294
- Ma, Y. C., Huang, L. F., Zhang, Q. L., Robust guaranteed cost control for an uncertain time-varying delay system., (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. MR2356808
- Milman, M. H., 10.1137/0326017, SIAM J. Control Optim. 2 (1988), 291-320. Zbl0651.93025MR0929803DOI10.1137/0326017
- Moelja, A. A., Meinsma, G., 10.1016/j.automatica.2005.01.016, Automatica 41 (2005), 7, 1229-1238. MR2160122DOI10.1016/j.automatica.2005.01.016
- Mondié, S., Michiels, W., 10.1109/TAC.2003.820147, IEEE Trans. Automat. Control 48, 12, 2207-2212. MR2027246DOI10.1109/TAC.2003.820147
- Niculescu, S.-I., Delay Effects on Stability, A Robust Control Approach., LNCIS 269, Springer-Verlag, London Limeted 2001. Zbl0997.93001MR1880658
- Kuang, Y., Delay Differential Equations With Applications in Population Dynamics., Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. Zbl0777.34002MR1218880
- Pandolfi, P., 10.1007/BF01182784, Appl. Math. Optim. 31 (1995), 119-136. Zbl0815.49006MR1309302DOI10.1007/BF01182784
- Pepe, P., Jiang, Z.-P., 10.1016/j.sysconle.2006.06.013, Syst. Control Lett. 55 (2006), 1006-1014. Zbl1120.93361MR2267393DOI10.1016/j.sysconle.2006.06.013
- Pindyck, R. S., 10.1109/TAC.1972.1099975, IEEE Trans. Automat. Control 17 (1972), 397-398. MR0439335DOI10.1109/TAC.1972.1099975
- Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X., 10.1109/TAC.2008.2009582, IEEE Trans. Automat. Control 54 (2009), 404-409. MR2491974DOI10.1109/TAC.2008.2009582
- Tadmor, G., 10.1109/9.847719, IEEE Trans. Automat. Control 45 (2000), 382-397. Zbl0978.93026MR1762852DOI10.1109/9.847719
- Wang, P. K. C., 10.1109/TAC.1975.1100968, IEEE Trans. Automat. Control 19 (1975), 425-426. DOI10.1109/TAC.1975.1100968
- Zhang, H., Duan, G., Xie, L., 10.1016/j.automatica.2006.04.007, Automatica 42 (2006), 9, 1465-1476. Zbl1128.49304MR2246836DOI10.1016/j.automatica.2006.04.007
- Zhou, B., Lin, Z., Duan, G.-R., 10.1016/j.automatica.2012.06.032, Automatica 48 (2012), 10, 2387-2389. MR2961137DOI10.1016/j.automatica.2012.06.032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.