Memoryless solution to the optimal control problem for linear systems with delayed input

Francesco Carravetta; Pasquale Palumbo; Pierdomenico Pepe

Kybernetika (2013)

  • Volume: 49, Issue: 4, page 568-589
  • ISSN: 0023-5954

Abstract

top
This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.

How to cite

top

Carravetta, Francesco, Palumbo, Pasquale, and Pepe, Pierdomenico. "Memoryless solution to the optimal control problem for linear systems with delayed input." Kybernetika 49.4 (2013): 568-589. <http://eudml.org/doc/260709>.

@article{Carravetta2013,
abstract = {This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.},
author = {Carravetta, Francesco, Palumbo, Pasquale, Pepe, Pierdomenico},
journal = {Kybernetika},
keywords = {time-delay systems; optimal control; stability; time-delay systems; optimal control; stability},
language = {eng},
number = {4},
pages = {568-589},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Memoryless solution to the optimal control problem for linear systems with delayed input},
url = {http://eudml.org/doc/260709},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Carravetta, Francesco
AU - Palumbo, Pasquale
AU - Pepe, Pierdomenico
TI - Memoryless solution to the optimal control problem for linear systems with delayed input
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 568
EP - 589
AB - This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.
LA - eng
KW - time-delay systems; optimal control; stability; time-delay systems; optimal control; stability
UR - http://eudml.org/doc/260709
ER -

References

top
  1. Basin, M., New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems., Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. Zbl1160.93001MR2462136
  2. Basin, M., Martanez-Zniga, R., 10.1002/rnc.917, Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. MR2058560DOI10.1002/rnc.917
  3. Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P., 10.1002/rnc.995, Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. Zbl1100.93012MR2139465DOI10.1002/rnc.995
  4. Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R., 10.1016/j.jfranklin.2003.12.004, J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. Zbl1073.93055MR2054476DOI10.1016/j.jfranklin.2003.12.004
  5. Boukas, E.-K., Liu, Z.-K., Deterministic and Stochastic Time Delay Systems., Birkhauser, Boston 2002. Zbl1056.93001
  6. Carravetta, F., Palumbo, P., Pepe, P., Quadratic optimal control of linear systems with time-varying input delay., In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000. 
  7. Carravetta, F., Palumbo, P., Pepe, P., Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input, In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012. 
  8. Chang, Y. P., Tsai, J. S. H., Shieh, L. S., Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints., IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392. 
  9. Chopra, N., Berestesky, P., Spong, M. W., 10.1109/TCST.2007.903397, IEEE Trans. Control Systems Technol. 16 (2008), 304-313. DOI10.1109/TCST.2007.903397
  10. Chyung, D. H., 10.1109/TAC.1969.1099152, IEEE Trans. Automat. Control 14 (1969), 196-197. MR0243873DOI10.1109/TAC.1969.1099152
  11. Delfour, M. C., 10.1137/0324053, SIAM J. Control Optim. 24 (1986), 835-883. Zbl0606.93037MR0854061DOI10.1137/0324053
  12. Fridman, E., 10.1016/S0167-6911(01)00114-1, Systems Control Lett. 43 (2001), 4, 309-319. Zbl0974.93028MR2008812DOI10.1016/S0167-6911(01)00114-1
  13. Fridman, E., 10.1016/S0022-247X(02)00202-0, J. Math. Anal. Appl. 273 (2002), 24-44. Zbl1032.34069MR1933013DOI10.1016/S0022-247X(02)00202-0
  14. Gu, K., Kharitonov, V. L., Chen, J., Stability of Time Delay Systems., Birkhauser, Boston 2003. Zbl1039.34067
  15. Ichikawa, A., 10.1137/0320048, SIAM J. Control Optim. 5 (1982), 645-668. Zbl0495.49006MR0667646DOI10.1137/0320048
  16. Germani, A., Manes, C., Pepe, P., Implementation of an LQG control scheme for linear systems with delayed feedback action., In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891. 
  17. Germani, A., Manes, C., Pepe, P., 10.1137/S0363012998337461, SIAM J. Control Optim. 39 (2000), 4, 1233-1295. Zbl1020.93030MR1814274DOI10.1137/S0363012998337461
  18. Kuang, Y., Delay Differential Equations with Applications in Population Dynamics., Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. Zbl0777.34002MR1218880
  19. Kojima, A., Ishijima, S., Formulas on preview and delayed H control., In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538. 
  20. Krstic, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems., Birkauser, Boston 2009. Zbl1181.93003MR2553294
  21. Ma, Y. C., Huang, L. F., Zhang, Q. L., Robust guaranteed cost H control for an uncertain time-varying delay system., (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. MR2356808
  22. Milman, M. H., 10.1137/0326017, SIAM J. Control Optim. 2 (1988), 291-320. Zbl0651.93025MR0929803DOI10.1137/0326017
  23. Moelja, A. A., Meinsma, G., 10.1016/j.automatica.2005.01.016, Automatica 41 (2005), 7, 1229-1238. MR2160122DOI10.1016/j.automatica.2005.01.016
  24. Mondié, S., Michiels, W., 10.1109/TAC.2003.820147, IEEE Trans. Automat. Control 48, 12, 2207-2212. MR2027246DOI10.1109/TAC.2003.820147
  25. Niculescu, S.-I., Delay Effects on Stability, A Robust Control Approach., LNCIS 269, Springer-Verlag, London Limeted 2001. Zbl0997.93001MR1880658
  26. Kuang, Y., Delay Differential Equations With Applications in Population Dynamics., Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. Zbl0777.34002MR1218880
  27. Pandolfi, P., 10.1007/BF01182784, Appl. Math. Optim. 31 (1995), 119-136. Zbl0815.49006MR1309302DOI10.1007/BF01182784
  28. Pepe, P., Jiang, Z.-P., 10.1016/j.sysconle.2006.06.013, Syst. Control Lett. 55 (2006), 1006-1014. Zbl1120.93361MR2267393DOI10.1016/j.sysconle.2006.06.013
  29. Pindyck, R. S., 10.1109/TAC.1972.1099975, IEEE Trans. Automat. Control 17 (1972), 397-398. MR0439335DOI10.1109/TAC.1972.1099975
  30. Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X., 10.1109/TAC.2008.2009582, IEEE Trans. Automat. Control 54 (2009), 404-409. MR2491974DOI10.1109/TAC.2008.2009582
  31. Tadmor, G., 10.1109/9.847719, IEEE Trans. Automat. Control 45 (2000), 382-397. Zbl0978.93026MR1762852DOI10.1109/9.847719
  32. Wang, P. K. C., 10.1109/TAC.1975.1100968, IEEE Trans. Automat. Control 19 (1975), 425-426. DOI10.1109/TAC.1975.1100968
  33. Zhang, H., Duan, G., Xie, L., 10.1016/j.automatica.2006.04.007, Automatica 42 (2006), 9, 1465-1476. Zbl1128.49304MR2246836DOI10.1016/j.automatica.2006.04.007
  34. Zhou, B., Lin, Z., Duan, G.-R., 10.1016/j.automatica.2012.06.032, Automatica 48 (2012), 10, 2387-2389. MR2961137DOI10.1016/j.automatica.2012.06.032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.