Strongly -Gorenstein modules
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 441-449
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topQiao, Husheng, and Xie, Zongyang. "Strongly $\mathcal {W}$-Gorenstein modules." Czechoslovak Mathematical Journal 63.2 (2013): 441-449. <http://eudml.org/doc/260714>.
@article{Qiao2013,
abstract = {Let $\mathcal \{W\}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal \{W\}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal \{W\}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal \{W\}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized.},
author = {Qiao, Husheng, Xie, Zongyang},
journal = {Czechoslovak Mathematical Journal},
keywords = {self-orthogonal class; strongly $\mathcal \{W\}$-Gorenstein module; $\mathcal \{C\}$-resolution; self-orthogonal classes of modules; Gorenstein modules; resolutions},
language = {eng},
number = {2},
pages = {441-449},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strongly $\mathcal \{W\}$-Gorenstein modules},
url = {http://eudml.org/doc/260714},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Qiao, Husheng
AU - Xie, Zongyang
TI - Strongly $\mathcal {W}$-Gorenstein modules
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 441
EP - 449
AB - Let $\mathcal {W}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal {W}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal {W}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal {W}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized.
LA - eng
KW - self-orthogonal class; strongly $\mathcal {W}$-Gorenstein module; $\mathcal {C}$-resolution; self-orthogonal classes of modules; Gorenstein modules; resolutions
UR - http://eudml.org/doc/260714
ER -
References
top- Anderson, F. W., Fuller, K. R., Rings and Categories of Modules. 2. ed., Graduate Texts in Mathematics 13, Springer New York (1992). (1992) MR1245487
- Auslander, M., Bridger, M., Stable module theory, Mem. Am. Math. Soc. 94 (1969). (1969) Zbl0204.36402MR0269685
- Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra. Vol. 2. 2nd revised ed., de Gruyter Expositions in Mathematics 54, Walter de Gruyter Berlin (2000). (2000) MR1753146
- Enochs, E. E., Jenda, O. M. G., On -Gorenstein modules, Interactions between ring theory and representations of algebras. Proceedings of the conference, Murcia Marcel Dekker New York (2000), 159-168. (2000) Zbl0989.13018MR1758408
- Enochs, E. E., Jenda, O. M. G., 10.1081/AGB-120028791, Commun. Algebra 32 (2004), 1453-1470. (2004) Zbl1092.13031MR2100367DOI10.1081/AGB-120028791
- Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.1080/00927870500328766, Commun. Algebra 33 (2005), 4705-4717. (2005) Zbl1087.16002MR2188336DOI10.1080/00927870500328766
- Geng, Y., Ding, N., 10.1016/j.jalgebra.2010.09.040, J. Algebra 325 (2011), 132-146. (2011) MR2745532DOI10.1016/j.jalgebra.2010.09.040
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
- Wei, J., 10.1080/00927870801940897, Commun. Algebra 36 (2008), 1817-1829. (2008) Zbl1153.16009MR2424268DOI10.1080/00927870801940897
- Yang, X., Liu, Z., 10.1016/j.jalgebra.2008.07.006, J. Algebra 320 (2008), 2659-2674. (2008) Zbl1173.16006MR2441993DOI10.1016/j.jalgebra.2008.07.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.