Indecomposable (1,3)-groups and a matrix problem

David M. Arnold; Adolf Mader; Otto Mutzbauer; Ebru Solak

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 307-355
  • ISSN: 0011-4642

Abstract

top
Almost completely decomposable groups with a critical typeset of type ( 1 , 3 ) and a p -primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient p k , either no indecomposables if k 2 ; only six near isomorphism types of indecomposables if k = 3 ; and indecomposables of arbitrary large rank if k 4 .

How to cite

top

Arnold, David M., et al. "Indecomposable (1,3)-groups and a matrix problem." Czechoslovak Mathematical Journal 63.2 (2013): 307-355. <http://eudml.org/doc/260716>.

@article{Arnold2013,
abstract = {Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\le 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\ge 4$.},
author = {Arnold, David M., Mader, Adolf, Mutzbauer, Otto, Solak, Ebru},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost completely decomposable group; indecomposable; representation; almost completely decomposable groups; finite rank torsion-free Abelian groups; subgroups of finite index; regulating subgroups; near-isomorphism classes; indecomposable groups},
language = {eng},
number = {2},
pages = {307-355},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Indecomposable (1,3)-groups and a matrix problem},
url = {http://eudml.org/doc/260716},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Arnold, David M.
AU - Mader, Adolf
AU - Mutzbauer, Otto
AU - Solak, Ebru
TI - Indecomposable (1,3)-groups and a matrix problem
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 307
EP - 355
AB - Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\le 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\ge 4$.
LA - eng
KW - almost completely decomposable group; indecomposable; representation; almost completely decomposable groups; finite rank torsion-free Abelian groups; subgroups of finite index; regulating subgroups; near-isomorphism classes; indecomposable groups
UR - http://eudml.org/doc/260716
ER -

References

top
  1. Arnold, D. M., Finite Rank Torsion-Free Abelian Groups and Rings. Lecture Notes 931, Springer Berlin (1982). (1982) MR0665251
  2. Arnold, D. M., Abelian Groups and Representations of Partially Ordered Finite Sets. CMS Advanced Books in Mathematics, Springer New York (2000). (2000) MR1764257
  3. Arnold, D. M., Dugas, M., Finite rank Butler groups with small typesets, Abelian Groups and Modules (Dublin 1998). Trends in Math. P. Eklof et al. Birkhäuser Basel (1998), 107-119. (1998) MR1735562
  4. Arnold, D. M., Simson, D., 10.1016/j.jpaa.2005.07.017, J. Pure Appl. Algebra 205 (2006), 640-659. (2006) Zbl1106.16016MR2210222DOI10.1016/j.jpaa.2005.07.017
  5. Arnold, D. M., Simson, D., 10.1080/00927870701405173, Commun. Algebra 35 (2007), 3128-3144. (2007) Zbl1142.16003MR2356147DOI10.1080/00927870701405173
  6. Arnold, D. M., Mader, A., Mutzbauer, O., Solak, E., 10.1016/j.jalgebra.2011.10.019, J. Algebra 349 (2012), 50-62. (2012) Zbl1253.20057MR2853625DOI10.1016/j.jalgebra.2011.10.019
  7. Bondarenko, V. M., Representations of bundles of semichained sets and their applications, St. Petersburg Math. J. 3 (1992), 973-996. (1992) MR1186235
  8. Burkhardt, R., On a special class of almost completely decomposable groups I, Abelian Groups and Modules. Proc. Udine Con. 1984, CISM Courses and Lecture 287 R. Göbel at al. Springer Vienna (1984), 141-150. (1984) MR0789813
  9. Corner, A. L. S., 10.1017/S0305004100035106, Proc. Camb. Philos. Soc. 57 (1961), 230-233. (1961) Zbl0100.02903MR0241530DOI10.1017/S0305004100035106
  10. Drozd, J. A., 10.1007/BF01084669, J. Sov. Math. 3 (1975), 692-699. (1975) DOI10.1007/BF01084669
  11. Dugas, M., 10.1515/form.2001.003, Forum Math. 13 (2001), 143-148. (2001) MR1808437DOI10.1515/form.2001.003
  12. Faticoni, T., Schultz, P., Direct decompositions of acd groups with primary regulating index, Abelian Groups and Modules. Proc. 1995 Colorado Springs Conference D. Arnold et al. Marcel Dekker New York (1996), 233-241. (1996) Zbl0869.20038MR1415636
  13. Fuchs, L., Infinite Abelian Groups, Vol. II, Pure and Applied Mathematics 36 Academic Press, New York (1973). (1973) Zbl0257.20035MR0349869
  14. Jacobson, N., Basic Algebra I, W. H. Freeman and Company San Francisco (1974). (1974) Zbl0284.16001MR0356989
  15. Lady, E. L., 10.1090/S0002-9939-1974-0349873-6, Proc. Am. Math. Soc. 45 (1974), 41-47. (1974) Zbl0292.20051MR0349873DOI10.1090/S0002-9939-1974-0349873-6
  16. Lady, E. L., 10.1016/0021-8693(75)90048-4, J. Algebra 35 (1975), 235-238. (1975) Zbl0322.20025MR0369568DOI10.1016/0021-8693(75)90048-4
  17. Mader, A., Almost Completely Decomposable Groups, Gordon and Breach Amsterdam (2000). (2000) Zbl0952.20043MR1751515
  18. Mader, A., Strüngmann, L., Generalized almost completely decomposable groups, Rend. Semin. Mat. Univ. Padova 113 (2005), 47-69. (2005) Zbl1149.20045MR2168980
  19. Mutzbauer, O., Regulating subgroups of Butler groups, Abelian Groups. Proc. 1991 Curaçao Conf. Lecture Notes Pure Appl. Math. 146 L. Fuchs Marcel Dekker New York (1993), 209-216. (1993) Zbl0801.20029MR1217272
  20. Mutzbauer, O., Solak, E., 10.1016/j.jalgebra.2008.09.002, J. Algebra 320 (2008), 3821-3831. (2008) MR2457724DOI10.1016/j.jalgebra.2008.09.002
  21. Nazarova, L. A., Roiter, A. V., 10.1070/IM1969v003n01ABEH000748, Math. USSR Izv. 3 (1969), 65-89 Russian. (1969) DOI10.1070/IM1969v003n01ABEH000748
  22. Nazarova, L. A., Roiter, A. V., Sergeichuk, V. V., Bondarenko, V. M., 10.1007/BF01084666, J. Sov. Math. 3 (1975), 636-653 translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 28 (1972),69-92 English. Russian original. (1972) MR0332963DOI10.1007/BF01084666
  23. Sergeichuk, V. V., 10.1016/S0024-3795(00)00150-6, Linear Algebra Appl. 317 (2000), 53-102. (2000) Zbl0967.15007MR1782204DOI10.1016/S0024-3795(00)00150-6
  24. Shapiro, H., A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147 (1991), 101-167. (1991) Zbl0723.15007MR1088662
  25. Simson, D., Linear Representations of Partially Ordered Sets and Vector Space Categories. Algebra, Logic and Applications Appl., Vol. 4, Gordon and Breach Brooklyn (2000). (2000) MR1241646
  26. Solak, E., Almost completely decomposable groups of type ( 1 , 2 ) , Dissertation Würzburg. (2007). (2007) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.