Simple games in Łukasiewicz calculus and their cores
Kybernetika (2013)
- Volume: 49, Issue: 3, page 404-419
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCintula, Petr, and Kroupa, Tomáš. "Simple games in Łukasiewicz calculus and their cores." Kybernetika 49.3 (2013): 404-419. <http://eudml.org/doc/260726>.
@article{Cintula2013,
abstract = {We propose a generalization of simple coalition games in the context of games with fuzzy coalitions. Mimicking the correspondence of simple games with non-constant monotone formulas of classical logic, we introduce simple Łukasiewicz games using monotone formulas of Łukasiewicz logic, one of the most prominent fuzzy logics. We study the core solution on the class of simple Łukasiewicz games and show that cores of such games are determined by finitely-many linear constraints only. The non-emptiness of core is completely characterized in terms of balanced systems and by the presence of strong veto players.},
author = {Cintula, Petr, Kroupa, Tomáš},
journal = {Kybernetika},
keywords = {simple game; game with fuzzy coalitions; core; McNaughton function; Łukasiewicz logic; simple games; games with fuzzy coalitions; core; McNaughton function; Łukasiewicz logic},
language = {eng},
number = {3},
pages = {404-419},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Simple games in Łukasiewicz calculus and their cores},
url = {http://eudml.org/doc/260726},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Cintula, Petr
AU - Kroupa, Tomáš
TI - Simple games in Łukasiewicz calculus and their cores
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 3
SP - 404
EP - 419
AB - We propose a generalization of simple coalition games in the context of games with fuzzy coalitions. Mimicking the correspondence of simple games with non-constant monotone formulas of classical logic, we introduce simple Łukasiewicz games using monotone formulas of Łukasiewicz logic, one of the most prominent fuzzy logics. We study the core solution on the class of simple Łukasiewicz games and show that cores of such games are determined by finitely-many linear constraints only. The non-emptiness of core is completely characterized in terms of balanced systems and by the presence of strong veto players.
LA - eng
KW - simple game; game with fuzzy coalitions; core; McNaughton function; Łukasiewicz logic; simple games; games with fuzzy coalitions; core; McNaughton function; Łukasiewicz logic
UR - http://eudml.org/doc/260726
ER -
References
top- Aguzzoli, S., Geometric and Proof-theoretic Issues in Łukasiewicz Propositional Logics., PhD. Thesis, University of Siena 1998.
- Aubin, J.-P., Coeur et valeur des jeux flous à paiements latéraux., Comptes rendus de l'Académie des Sciences, Série A 279 (1974), 891-894. Zbl0297.90128MR0368799
- Aumann, R. J., Shapley, L. S., Values of Non-atomic Games., Princeton University Press, Princeton 1974. Zbl0311.90084MR0378865
- Azrieli, Y., Lehrer, E., 10.1007/s00182-007-0093-2, Internat. J. Game Theory 36 (2007), 1, 1-15. Zbl1128.91005MR2332449DOI10.1007/s00182-007-0093-2
- Branzei, R., Dimitrov, D., Tijs, S., Models in Cooperative Game Theory., Lecture Notes in Econom. and Math. Systems 556, Springer-Verlag, Berlin 2005. Zbl1142.91017MR2162897
- Butnariu, D., Klement, E. P., Triangular Norm Based Measures and Games with Fuzzy Coalitions., Kluwer, Dordrecht 1993. Zbl0804.90145MR2867321
- Butnariu, D., Kroupa, T., 10.1016/j.ejor.2007.01.033, European J. Oper. Res. 186 (2008), 1, 288-299. Zbl1138.91320MR2363872DOI10.1016/j.ejor.2007.01.033
- Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-valued Reasoning., Trends in Logic - Studia Logica Library 7, Kluwer Academic Publishers, Dordrecht 2000. Zbl0937.06009MR1786097
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Trends in Logic - Studia Logica Library 8, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- McNaughton, R., 10.2307/2268660, J. Symbolic Logic 16 (1051), 1-13. Zbl0135.24807MR0041799DOI10.2307/2268660
- Mundici, D., 10.1007/BF01053035, Studia Logica 55 (1995), 1, 113-127. Zbl0836.03016MR1348840DOI10.1007/BF01053035
- Peleg, B., Sudhölter, P., Introduction to the Theory of Cooperative Games. Second edition., Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research 34, Springer, Berlin 2007. MR2364703
- Riečan, B., Mundici, D., Probability on MV-algebras., In: Handbook of Measure Theory, Vol. I, II, North-Holland, Amsterdam 2002, pp. 869-909. Zbl1017.28002MR1954631
- Rose, A., Rosser, J. B., 10.1090/S0002-9947-1958-0094299-1, Trans. AMS 87 (1958), 1-53. Zbl0085.24303MR0094299DOI10.1090/S0002-9947-1958-0094299-1
- Webster, R., Convexity., Oxford Science Publications. The Clarendon Press Oxford University Press, New York 1994. Zbl1052.68785MR1443208
- Wegener, I., The Complexity of Boolean Functions., Wiley-Teubner Series in Computer Science. John Wiley and Sons, Chichester 1987. Zbl0623.94018MR0905473
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.