An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form
Kybernetika (2013)
- Volume: 49, Issue: 4, page 636-643
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSzabó, Peter. "An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form." Kybernetika 49.4 (2013): 636-643. <http://eudml.org/doc/260743>.
@article{Szabó2013,
abstract = {The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n\times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of $n-1$.},
author = {Szabó, Peter},
journal = {Kybernetika},
keywords = {max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix; max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix},
language = {eng},
number = {4},
pages = {636-643},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form},
url = {http://eudml.org/doc/260743},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Szabó, Peter
TI - An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 636
EP - 643
AB - The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n\times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of $n-1$.
LA - eng
KW - max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix; max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix
UR - http://eudml.org/doc/260743
ER -
References
top- Butkovič, P., Max-linear Systems: Theory and Algorithms., Springer-Verlag, London 2010. Zbl1202.15032MR2681232
- Cuninghame-Green, R. A., Minimax Algebra., Springer-Verlag, Berlin 1979. Zbl0739.90073MR0580321
- Heidergott, B., Olsder, G. J., Woude, J. van der, Max Plus at Work. Modeling and Analysis of Synchronized Systems., Princeton University Press 2004.
- Heinig, G., Not every matrix is similar to a Toeplitz matrix., Linear Algebra Appl. 332-334 (2001), 519-531. Zbl0985.15013MR1839449
- Karp, R. M., A characterization of the minimum cycle mean in a digraph., Discrete Math. 23 (1978), 309-311. Zbl0386.05032MR0523080
- Landau, H. J., 10.1090/S0894-0347-1994-1234570-6, J. Amer. Math. Soc. 7 (1994), 749-767. MR1234570DOI10.1090/S0894-0347-1994-1234570-6
- Plavka, J., 10.1080/02331930410001661497, Optimization 53 (2004), 95-101. Zbl1079.93033MR2040637DOI10.1080/02331930410001661497
- Szabó, P., 10.1016/j.orl.2009.04.003, Oper. Res. Lett. 37(5) (2009), 356-358. Zbl1231.05017MR2573448DOI10.1016/j.orl.2009.04.003
- Zimmermann, K., Extremální algebra (in Czech)., Ekonomický ústav SAV, Praha 1976.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.