On McCoy condition and semicommutative rings
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 329-337
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLouzari, Mohamed. "On McCoy condition and semicommutative rings." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 329-337. <http://eudml.org/doc/260747>.
@article{Louzari2013,
abstract = {Let $R$ be a ring and $\sigma $ an endomorphism of $R$. We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma ]$. As a consequence, we will show some results on semicommutative and $\sigma $-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.},
author = {Louzari, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma $-skew McCoy; Armendariz rings; skew McCoy rings; Nagata extensions; semicommutative rings; right annihilators; skew polynomial rings},
language = {eng},
number = {3},
pages = {329-337},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On McCoy condition and semicommutative rings},
url = {http://eudml.org/doc/260747},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Louzari, Mohamed
TI - On McCoy condition and semicommutative rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 329
EP - 337
AB - Let $R$ be a ring and $\sigma $ an endomorphism of $R$. We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma ]$. As a consequence, we will show some results on semicommutative and $\sigma $-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
LA - eng
KW - Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma $-skew McCoy; Armendariz rings; skew McCoy rings; Nagata extensions; semicommutative rings; right annihilators; skew polynomial rings
UR - http://eudml.org/doc/260747
ER -
References
top- Anderson D.D., Camillo V., 10.1080/00927879808826274, Comm. Algebra 26 (1998), no. 7, 2265–2272. Zbl0915.13001MR1626606DOI10.1080/00927879808826274
- Armendariz E.P., 10.1017/S1446788700029190, J. Austral. Math. Soc. 18 (1974), 470–473. Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
- Annin S., 10.1081/AGB-120003481, Comm. Algebra 30 (2002), 2511–2528. MR1904650DOI10.1081/AGB-120003481
- Başer M., Harmanci A., Kwak T.K., 10.4134/BKMS.2008.45.2.285, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297. Zbl1144.16025MR2419077DOI10.4134/BKMS.2008.45.2.285
- Başer M., Hong C.Y., Kwak T.K., On extended reversible rings, Algebra Colloq. 16 (2009), 37–48. Zbl1167.16018MR2477108
- Başer M., Kwak T.K., Lee Y., 10.1080/00927870802545661, Comm. Algebra 37 (2009), no. 11, 4026–4037. Zbl1187.16027MR2573233DOI10.1080/00927870802545661
- Clark W.E., 10.1215/S0012-7094-67-03446-1, Duke Math. J. 34 (1967), 417–424. Zbl0204.04502MR0214626DOI10.1215/S0012-7094-67-03446-1
- Hirano Y., 10.1016/S0022-4049(01)00053-6, J. Pure. Appl. Algebra 168 (2002), no. 1, 45–52. MR1879930DOI10.1016/S0022-4049(01)00053-6
- Hong C.Y., Kim N.K., Kwak T.K., 10.1016/S0022-4049(99)00020-1, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. Zbl0982.16021MR1776431DOI10.1016/S0022-4049(99)00020-1
- Hong C.Y., Kim N.K., Kwak T.K., 10.1081/AGB-120016752, Comm. Algebra 31 (2003), no. 1, 103–122. Zbl1042.16014MR1969216DOI10.1081/AGB-120016752
- Hong C.Y., Kwak T.K., Rezvi S.T., Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266. MR2208362
- Hong C.Y., Kim N.K., Lee Y., 10.1080/00927870802304663, Comm. Algebra 37 (2009), no. 6, 2030–2039. Zbl1177.16016MR2530760DOI10.1080/00927870802304663
- Hong C.Y., Kim N.K., Lee Y., 10.1017/S0017089509990243, Glasg. Math. J. 52 (2010), 155–159. Zbl1195.16026MR2587825DOI10.1017/S0017089509990243
- Hong C.Y., Jeon Y.C., Kim N.K., Lee Y., 10.1080/00927872.2010.480952, Comm. Algebra 39 (2011), no. 5, 1809–1825. Zbl1231.16032MR2821508DOI10.1080/00927872.2010.480952
- Huh C., Lee Y., Smoktunowics A., 10.1081/AGB-120013179, Comm. Algebra 30 (2002), no. 2, 751–761. MR1883022DOI10.1081/AGB-120013179
- Huh C., Kim H.K., Kim N.K., Lee Y., 10.1016/j.jpaa.2005.01.009, J. Pure Appl. Algebra 202 (2005), 154–167. Zbl1078.16030MR2163406DOI10.1016/j.jpaa.2005.01.009
- McCoy N.H., 10.2307/2309082, Amer. Math. Monthly 64 (1957), 28–29. Zbl0077.25903MR0082486DOI10.2307/2309082
- McCoy N.H., 10.2307/2303094, Amer. Math. Monthly 49 (1942), 286–295. Zbl0060.07703MR0006150DOI10.2307/2303094
- Nagata M., Local Rings, Interscience, New York, 1962. Zbl0386.13010MR0155856
- Nielsen P.P., Semicommutative and McCoy condition, J. Pure Appl. Algebra 298 (2006), 134–141. MR2215121
- Kim N.K., Lee Y., 10.1016/S0022-4049(03)00109-9, J. Pure Appl. Algebra 185 (2003), 207–223. Zbl1040.16021MR2006427DOI10.1016/S0022-4049(03)00109-9
- Rege M.B., Chhawchharia S., 10.3792/pjaa.73.14, Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), 14–17. Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14
- Louzari M., On skew polynomials over p.q.-Baer and p.p.-modules, Inter. Math. Forum 6 (2011), no. 35, 1739–1747. Zbl1250.16023MR2826885
- Zhang C.P., Chen J.L., -skew Armendariz modules and -semicommutative modules, Taiwanese J. Math. 12 (2008), no. 2, 473–486. MR2402129
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.