On McCoy condition and semicommutative rings

Mohamed Louzari

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 3, page 329-337
  • ISSN: 0010-2628

Abstract

top
Let R be a ring and σ an endomorphism of R . We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form R [ x ; σ ] . As a consequence, we will show some results on semicommutative and σ -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

How to cite

top

Louzari, Mohamed. "On McCoy condition and semicommutative rings." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 329-337. <http://eudml.org/doc/260747>.

@article{Louzari2013,
abstract = {Let $R$ be a ring and $\sigma $ an endomorphism of $R$. We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma ]$. As a consequence, we will show some results on semicommutative and $\sigma $-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.},
author = {Louzari, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma $-skew McCoy; Armendariz rings; skew McCoy rings; Nagata extensions; semicommutative rings; right annihilators; skew polynomial rings},
language = {eng},
number = {3},
pages = {329-337},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On McCoy condition and semicommutative rings},
url = {http://eudml.org/doc/260747},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Louzari, Mohamed
TI - On McCoy condition and semicommutative rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 329
EP - 337
AB - Let $R$ be a ring and $\sigma $ an endomorphism of $R$. We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma ]$. As a consequence, we will show some results on semicommutative and $\sigma $-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
LA - eng
KW - Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma $-skew McCoy; Armendariz rings; skew McCoy rings; Nagata extensions; semicommutative rings; right annihilators; skew polynomial rings
UR - http://eudml.org/doc/260747
ER -

References

top
  1. Anderson D.D., Camillo V., 10.1080/00927879808826274, Comm. Algebra 26 (1998), no. 7, 2265–2272. Zbl0915.13001MR1626606DOI10.1080/00927879808826274
  2. Armendariz E.P., 10.1017/S1446788700029190, J. Austral. Math. Soc. 18 (1974), 470–473. Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
  3. Annin S., 10.1081/AGB-120003481, Comm. Algebra 30 (2002), 2511–2528. MR1904650DOI10.1081/AGB-120003481
  4. Başer M., Harmanci A., Kwak T.K., 10.4134/BKMS.2008.45.2.285, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297. Zbl1144.16025MR2419077DOI10.4134/BKMS.2008.45.2.285
  5. Başer M., Hong C.Y., Kwak T.K., On extended reversible rings, Algebra Colloq. 16 (2009), 37–48. Zbl1167.16018MR2477108
  6. Başer M., Kwak T.K., Lee Y., 10.1080/00927870802545661, Comm. Algebra 37 (2009), no. 11, 4026–4037. Zbl1187.16027MR2573233DOI10.1080/00927870802545661
  7. Clark W.E., 10.1215/S0012-7094-67-03446-1, Duke Math. J. 34 (1967), 417–424. Zbl0204.04502MR0214626DOI10.1215/S0012-7094-67-03446-1
  8. Hirano Y., 10.1016/S0022-4049(01)00053-6, J. Pure. Appl. Algebra 168 (2002), no. 1, 45–52. MR1879930DOI10.1016/S0022-4049(01)00053-6
  9. Hong C.Y., Kim N.K., Kwak T.K., 10.1016/S0022-4049(99)00020-1, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. Zbl0982.16021MR1776431DOI10.1016/S0022-4049(99)00020-1
  10. Hong C.Y., Kim N.K., Kwak T.K., 10.1081/AGB-120016752, Comm. Algebra 31 (2003), no. 1, 103–122. Zbl1042.16014MR1969216DOI10.1081/AGB-120016752
  11. Hong C.Y., Kwak T.K., Rezvi S.T., Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266. MR2208362
  12. Hong C.Y., Kim N.K., Lee Y., 10.1080/00927870802304663, Comm. Algebra 37 (2009), no. 6, 2030–2039. Zbl1177.16016MR2530760DOI10.1080/00927870802304663
  13. Hong C.Y., Kim N.K., Lee Y., 10.1017/S0017089509990243, Glasg. Math. J. 52 (2010), 155–159. Zbl1195.16026MR2587825DOI10.1017/S0017089509990243
  14. Hong C.Y., Jeon Y.C., Kim N.K., Lee Y., 10.1080/00927872.2010.480952, Comm. Algebra 39 (2011), no. 5, 1809–1825. Zbl1231.16032MR2821508DOI10.1080/00927872.2010.480952
  15. Huh C., Lee Y., Smoktunowics A., 10.1081/AGB-120013179, Comm. Algebra 30 (2002), no. 2, 751–761. MR1883022DOI10.1081/AGB-120013179
  16. Huh C., Kim H.K., Kim N.K., Lee Y., 10.1016/j.jpaa.2005.01.009, J. Pure Appl. Algebra 202 (2005), 154–167. Zbl1078.16030MR2163406DOI10.1016/j.jpaa.2005.01.009
  17. McCoy N.H., 10.2307/2309082, Amer. Math. Monthly 64 (1957), 28–29. Zbl0077.25903MR0082486DOI10.2307/2309082
  18. McCoy N.H., 10.2307/2303094, Amer. Math. Monthly 49 (1942), 286–295. Zbl0060.07703MR0006150DOI10.2307/2303094
  19. Nagata M., Local Rings, Interscience, New York, 1962. Zbl0386.13010MR0155856
  20. Nielsen P.P., Semicommutative and McCoy condition, J. Pure Appl. Algebra 298 (2006), 134–141. MR2215121
  21. Kim N.K., Lee Y., 10.1016/S0022-4049(03)00109-9, J. Pure Appl. Algebra 185 (2003), 207–223. Zbl1040.16021MR2006427DOI10.1016/S0022-4049(03)00109-9
  22. Rege M.B., Chhawchharia S., 10.3792/pjaa.73.14, Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), 14–17. Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14
  23. Louzari M., On skew polynomials over p.q.-Baer and p.p.-modules, Inter. Math. Forum 6 (2011), no. 35, 1739–1747. Zbl1250.16023MR2826885
  24. Zhang C.P., Chen J.L., σ -skew Armendariz modules and σ -semicommutative modules, Taiwanese J. Math. 12 (2008), no. 2, 473–486. MR2402129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.