Semilinear fractional order integro-differential equations with infinite delay in Banach spaces
Khalida Aissani; Mouffak Benchohra
Archivum Mathematicum (2013)
- Volume: 049, Issue: 2, page 105-117
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAissani, Khalida, and Benchohra, Mouffak. "Semilinear fractional order integro-differential equations with infinite delay in Banach spaces." Archivum Mathematicum 049.2 (2013): 105-117. <http://eudml.org/doc/260750>.
@article{Aissani2013,
abstract = {This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.},
author = {Aissani, Khalida, Benchohra, Mouffak},
journal = {Archivum Mathematicum},
keywords = {semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space; semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space},
language = {eng},
number = {2},
pages = {105-117},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Semilinear fractional order integro-differential equations with infinite delay in Banach spaces},
url = {http://eudml.org/doc/260750},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Aissani, Khalida
AU - Benchohra, Mouffak
TI - Semilinear fractional order integro-differential equations with infinite delay in Banach spaces
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 2
SP - 105
EP - 117
AB - This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.
LA - eng
KW - semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space; semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space
UR - http://eudml.org/doc/260750
ER -
References
top- Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) Zbl1273.35001MR2962045
- Agarwal, R. P., Belmekki, M., Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differential Equations 2009 (2009), 1–47, Article ID 981728. (2009) Zbl1182.34103MR2505633
- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973–1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Agarwal, R. P., Meehan, M., O’Regan, D., 10.1017/CBO9780511543005.008, Cambridge University Press, 2001. (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005.008
- Appell, J. M., Kalitvin, A. S., Zabrejko, P. P., Partial Integral Operators and Integrodifferential Equations, vol. 230, Marcel Dekker, Inc., New York, 2000. (2000) MR1760093
- Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
- Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980. (1980) MR0591679
- Benchohra, M., Henderson, J., Ntouyas, S., Ouahab, A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. (2008) Zbl1209.34096MR2386501DOI10.1016/j.jmaa.2007.06.021
- Bothe, D., 10.1007/BF02783044, Israel J. Math. 108 (1998), 109–138. (1998) Zbl0922.47048MR1669396DOI10.1007/BF02783044
- Case, K. M., Zweifel, P. F., Linear Transport Theory, Addison-Wesley, Reading, MA, 1967. (1967) Zbl0162.58903MR0225547
- Chandrasekhe, S., Radiative Transfer, Dover Publications, New York, 1960. (1960) MR0111583
- Corduneanu, C., Lakshmikantham, V., 10.1016/0362-546X(80)90001-2, Nonlinear Anal. 4 (1980), 831–877. (1980) Zbl0449.34048MR0586852DOI10.1016/0362-546X(80)90001-2
- Diethelm, K., The Analysis of Fractional Differential Equations, Springer, Berlin, 2010. (2010) Zbl1215.34001MR2680847
- El–Borai, M., 10.1016/S0960-0779(01)00208-9, Chaos, Solitons & Fractals 14 (2002), 433–440. (2002) Zbl1005.34051MR1903295DOI10.1016/S0960-0779(01)00208-9
- Hale, J. K., Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1) (1978), 11–41. (1978) Zbl0383.34055MR0492721
- Hale, J. K., Lunel, S. Verduyn, Introduction to Functional–Differential Equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. (1993) MR1243878
- Heinz, H.–P., 10.1016/0362-546X(83)90006-8, Nonlinear Anal. 7 (12) (1983), 1351–1371. (1983) Zbl0528.47046MR0726478DOI10.1016/0362-546X(83)90006-8
- Hilfer, R., Applications of fractional calculus in physics, Singapore, World Scientific, 2000. (2000) Zbl0998.26002MR1890104
- Hino, Y., Murakami, S., Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991. (1991) Zbl0732.34051MR1122588
- Kilbas, A. A., Srivastava, Hari M., Trujillo, Juan J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Kolmanovskii, V., Myshkis, A., Introduction to the Theory and Applications of Functional–Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl0917.34001MR1680144
- Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. (1994) Zbl0823.34069MR1319339
- Li, F., Zhang, J., Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay, Adv. Differential Equations 2011 (2011), 1–15, Article ID 963463. (2011) Zbl1213.45008MR2774252
- Liang, J., Xiao, T.–J., van Casteren, J., 10.1016/S0893-9659(04)90092-4, Appl. Math. Lett. 17 (4) (2004), 473–477. (2004) Zbl1082.34543MR2045755DOI10.1016/S0893-9659(04)90092-4
- Mainardi, F., Paradisi, P., Gorenflo, R., Probability distributions generated by fractional diffusion equations, Econophysics: An Emerging Science (Kertesz, J., Kondor, I., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. (2000)
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. (1993) MR1219954
- Mönch, H., 10.1016/0362-546X(80)90010-3, Nonlinear Anal. 4 (1980), 985–999. (1980) MR0586861DOI10.1016/0362-546X(80)90010-3
- Mophou, G. M., Nakoulima, O., N’Guérékata, G. M., Existence results for some fractional differential equations with nonlocal conditions, Nonlinear Stud. 17 (2010), 15–22. (2010) Zbl1204.34010MR2647799
- Mophou, G. M., N’Guérékata, G. M., 10.1007/s00233-008-9117-x, Semigroup Forum 79 (2009), 315–322. (2009) MR2538728DOI10.1007/s00233-008-9117-x
- Obukhovskii, V., Yao, J.–C., Some existence results for fractional functional differential equations, Fixed Point Theory 11 (2010), 85–96. (2010) Zbl1202.34141MR2656008
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. (1993) Zbl0818.26003MR1347689
- Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. (2010) MR2796453
- Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer Verlag, New York, 1996. (1996) Zbl0870.35116MR1415838
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.