Semilinear fractional order integro-differential equations with infinite delay in Banach spaces

Khalida Aissani; Mouffak Benchohra

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 2, page 105-117
  • ISSN: 0044-8753

Abstract

top
This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.

How to cite

top

Aissani, Khalida, and Benchohra, Mouffak. "Semilinear fractional order integro-differential equations with infinite delay in Banach spaces." Archivum Mathematicum 049.2 (2013): 105-117. <http://eudml.org/doc/260750>.

@article{Aissani2013,
abstract = {This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.},
author = {Aissani, Khalida, Benchohra, Mouffak},
journal = {Archivum Mathematicum},
keywords = {semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space; semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space},
language = {eng},
number = {2},
pages = {105-117},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Semilinear fractional order integro-differential equations with infinite delay in Banach spaces},
url = {http://eudml.org/doc/260750},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Aissani, Khalida
AU - Benchohra, Mouffak
TI - Semilinear fractional order integro-differential equations with infinite delay in Banach spaces
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 2
SP - 105
EP - 117
AB - This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.
LA - eng
KW - semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space; semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space
UR - http://eudml.org/doc/260750
ER -

References

top
  1. Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) Zbl1273.35001MR2962045
  2. Agarwal, R. P., Belmekki, M., Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differential Equations 2009 (2009), 1–47, Article ID 981728. (2009) Zbl1182.34103MR2505633
  3. Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973–1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
  4. Agarwal, R. P., Meehan, M., O’Regan, D., 10.1017/CBO9780511543005.008, Cambridge University Press, 2001. (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005.008
  5. Appell, J. M., Kalitvin, A. S., Zabrejko, P. P., Partial Integral Operators and Integrodifferential Equations, vol. 230, Marcel Dekker, Inc., New York, 2000. (2000) MR1760093
  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
  7. Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980. (1980) MR0591679
  8. Benchohra, M., Henderson, J., Ntouyas, S., Ouahab, A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. (2008) Zbl1209.34096MR2386501DOI10.1016/j.jmaa.2007.06.021
  9. Bothe, D., 10.1007/BF02783044, Israel J. Math. 108 (1998), 109–138. (1998) Zbl0922.47048MR1669396DOI10.1007/BF02783044
  10. Case, K. M., Zweifel, P. F., Linear Transport Theory, Addison-Wesley, Reading, MA, 1967. (1967) Zbl0162.58903MR0225547
  11. Chandrasekhe, S., Radiative Transfer, Dover Publications, New York, 1960. (1960) MR0111583
  12. Corduneanu, C., Lakshmikantham, V., 10.1016/0362-546X(80)90001-2, Nonlinear Anal. 4 (1980), 831–877. (1980) Zbl0449.34048MR0586852DOI10.1016/0362-546X(80)90001-2
  13. Diethelm, K., The Analysis of Fractional Differential Equations, Springer, Berlin, 2010. (2010) Zbl1215.34001MR2680847
  14. El–Borai, M., 10.1016/S0960-0779(01)00208-9, Chaos, Solitons & Fractals 14 (2002), 433–440. (2002) Zbl1005.34051MR1903295DOI10.1016/S0960-0779(01)00208-9
  15. Hale, J. K., Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1) (1978), 11–41. (1978) Zbl0383.34055MR0492721
  16. Hale, J. K., Lunel, S. Verduyn, Introduction to Functional–Differential Equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. (1993) MR1243878
  17. Heinz, H.–P., 10.1016/0362-546X(83)90006-8, Nonlinear Anal. 7 (12) (1983), 1351–1371. (1983) Zbl0528.47046MR0726478DOI10.1016/0362-546X(83)90006-8
  18. Hilfer, R., Applications of fractional calculus in physics, Singapore, World Scientific, 2000. (2000) Zbl0998.26002MR1890104
  19. Hino, Y., Murakami, S., Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991. (1991) Zbl0732.34051MR1122588
  20. Kilbas, A. A., Srivastava, Hari M., Trujillo, Juan J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  21. Kolmanovskii, V., Myshkis, A., Introduction to the Theory and Applications of Functional–Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl0917.34001MR1680144
  22. Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. (1994) Zbl0823.34069MR1319339
  23. Li, F., Zhang, J., Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay, Adv. Differential Equations 2011 (2011), 1–15, Article ID 963463. (2011) Zbl1213.45008MR2774252
  24. Liang, J., Xiao, T.–J., van Casteren, J., 10.1016/S0893-9659(04)90092-4, Appl. Math. Lett. 17 (4) (2004), 473–477. (2004) Zbl1082.34543MR2045755DOI10.1016/S0893-9659(04)90092-4
  25. Mainardi, F., Paradisi, P., Gorenflo, R., Probability distributions generated by fractional diffusion equations, Econophysics: An Emerging Science (Kertesz, J., Kondor, I., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. (2000) 
  26. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. (1993) MR1219954
  27. Mönch, H., 10.1016/0362-546X(80)90010-3, Nonlinear Anal. 4 (1980), 985–999. (1980) MR0586861DOI10.1016/0362-546X(80)90010-3
  28. Mophou, G. M., Nakoulima, O., N’Guérékata, G. M., Existence results for some fractional differential equations with nonlocal conditions, Nonlinear Stud. 17 (2010), 15–22. (2010) Zbl1204.34010MR2647799
  29. Mophou, G. M., N’Guérékata, G. M., 10.1007/s00233-008-9117-x, Semigroup Forum 79 (2009), 315–322. (2009) MR2538728DOI10.1007/s00233-008-9117-x
  30. Obukhovskii, V., Yao, J.–C., Some existence results for fractional functional differential equations, Fixed Point Theory 11 (2010), 85–96. (2010) Zbl1202.34141MR2656008
  31. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  32. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. (1993) Zbl0818.26003MR1347689
  33. Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. (2010) MR2796453
  34. Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer Verlag, New York, 1996. (1996) Zbl0870.35116MR1415838

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.