On the adaptive wavelet estimation of a multidimensional regression function under -mixing dependence: Beyond the standard assumptions on the noise
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 4, page 527-556
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChesneau, Christophe. "On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 527-556. <http://eudml.org/doc/260751>.
@article{Chesneau2013,
abstract = {We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha $-mixing process $(Y,X)$, where $Y=f(X)+\xi $, $X$ represents the design and $\xi $ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi $ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi $ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates of convergence under the mean integrated squared error over a wide class of functions $f$.},
author = {Chesneau, Christophe},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonparametric regression; $\alpha $-mixing dependence; adaptive estimation; wavelet methods; rates of convergence; nonparametric regression; -mixing dependence; wavelet methods; rate of convergence; adaptive estimation},
language = {eng},
number = {4},
pages = {527-556},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise},
url = {http://eudml.org/doc/260751},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Chesneau, Christophe
TI - On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 527
EP - 556
AB - We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha $-mixing process $(Y,X)$, where $Y=f(X)+\xi $, $X$ represents the design and $\xi $ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi $ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi $ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates of convergence under the mean integrated squared error over a wide class of functions $f$.
LA - eng
KW - nonparametric regression; $\alpha $-mixing dependence; adaptive estimation; wavelet methods; rates of convergence; nonparametric regression; -mixing dependence; wavelet methods; rate of convergence; adaptive estimation
UR - http://eudml.org/doc/260751
ER -
References
top- Antoniadis A., 10.1007/BF03178905, J. Italian Statistical Society Series B 6 (1997), 97–144. DOI10.1007/BF03178905
- Antoniadis A., Grégoire G., Vial P., 10.1016/S0167-7152(97)00017-5, Statist. Probab. Lett. 35 (1997), 225–232. Zbl0889.62029MR1484959DOI10.1016/S0167-7152(97)00017-5
- Antoniadis A., Bigot J., Sapatinas T., Wavelet estimators in nonparametric regression: a comparative simulation study, J. Statist. Software 6 (2001), no. 6.
- Antoniadis A., Leporini D.. Pesquet J.-C., 10.1111/1467-9574.00211, Statist. Neerlandica 56 (2002), no. 4, 434–453. MR2027535DOI10.1111/1467-9574.00211
- Baraud Y., Comte F., Viennet G., Adaptive estimation in autoregression or -mixing regression via model selection, Ann. Statist. 29 (2001), no. 3, 839–875. Zbl1012.62034MR1865343
- Benatia F., Yahia D., Nonlinear wavelet regression function estimator for censored dependent data, J. Afr. Stat. 7 (2012), 391–411. Zbl1258.62046MR3034386
- Beran J., Shumeyko Y., 10.3150/10-BEJ332, Bernoulli 18 (2012), no. 1, 137–176. Zbl1235.62124MR2888702DOI10.3150/10-BEJ332
- Bochkina N., Sapatinas T., Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks, Statist. Sinica 19 (2009), 1389–1406. Zbl1191.62069MR2589188
- Bradley R.C., Introduction to Strong Mixing Conditions, Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007. Zbl1134.60004MR2325294
- Cai T., Adaptive wavelet estimation: a block thresholding and oracle inequality approach, Ann. Statist. 27 (1999), 898–924. Zbl0954.62047MR1724035
- Cai, T., On block thresholding in wavelet regression: adaptivity, block size and threshold level, Statist. Sinica 12 (2002), 1241–1273. Zbl1004.62036MR1947074
- Cai T., Brown L.D., 10.1214/aos/1024691357, Ann. Statist. 26 (1998), 1783–1799. Zbl0929.62047MR1673278DOI10.1214/aos/1024691357
- Cai T., Brown L.D., 10.1016/S0167-7152(98)00223-5, Statist. Probab. Lett. 42 (1999), 313–321. Zbl0940.62037MR1688134DOI10.1016/S0167-7152(98)00223-5
- Carrasco M., Chen X., 10.1017/S0266466602181023, Econometric Theory 18 (2002), 17–39. Zbl1181.62125MR1885348DOI10.1017/S0266466602181023
- Chaubey Y.P., Shirazi E., On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing, Comm. Statist. Theory Methods(to appear).
- Chaubey Y.P., Chesneau C., Shirazi E., 10.1080/10485252.2012.734619, J. Nonparametr. Stat. 25 (2013), no. 1, 53–71. MR3039970DOI10.1080/10485252.2012.734619
- Chesneau C., 10.1016/j.spl.2006.05.010, Statist. Probab. Lett. 77 (2007), no. 1, 40–53. Zbl1109.62028MR2339017DOI10.1016/j.spl.2006.05.010
- Chesneau C., Adaptive wavelet regression in random design and general errors with weakly dependent data, Acta Univ. Apulensis Math. Inform 29 (2012), 65–84. MR3015056
- Chesneau C., Fadili J., 10.1007/s10182-011-0157-2, AStA Adv. Stat. Anal. 96 (2012), no. 1, 25–46. MR2878037DOI10.1007/s10182-011-0157-2
- Chesneau C., Shirazi E., Nonparametric wavelet regression based on biased data, Comm. Statist. Theory Methods(to appear).
- Chesneau C., Kachour M., Navarro F., A note on the adaptive estimation of a quadratic functional from dependent observations, IStatistik: Journal of the Turkish Statistical Association 6 (2013), no. 1, 10–26. MR3086320
- Clyde M.A., George E.I., 10.1007/978-1-4612-0567-8_19, in Bayesian Inference in Wavelet-based Models, Lecture Notes in Statistics, 141, Springer, New York, 1999, pp. 309-322. Zbl0936.62008MR1699849DOI10.1007/978-1-4612-0567-8_19
- Cohen A., Daubechies I., Jawerth B., Vial P., 10.1006/acha.1993.1005, Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. MR1256527DOI10.1006/acha.1993.1005
- Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. Zbl1006.42030MR1162107
- Davydov Y., 10.1137/1115050, Theor. Probab. Appl. 15 (1970), no. 3, 498–509. Zbl0219.60030MR0283872DOI10.1137/1115050
- Delouille V., Franke J., von Sachs R., Nonparametric stochastic regression with design-adapted wavelets, Sankhya Ser. A 63 (2001), 328–366. Zbl1192.62115MR1897046
- Delyon B., Juditsky A., 10.1006/acha.1996.0017, Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl0865.62023MR1400080DOI10.1006/acha.1996.0017
- DeVore R., Popov V., 10.1090/S0002-9947-1988-0920166-3, Trans. Amer. Math. Soc. 305 (1998), 397–414. Zbl0646.46030MR0920166DOI10.1090/S0002-9947-1988-0920166-3
- Donoho D.L., Johnstone I.M., 10.1093/biomet/81.3.425, Biometrika 81 (1994), 425–455. Zbl0815.62019MR1311089DOI10.1093/biomet/81.3.425
- Donoho D.L., Johnstone I.M., 10.1080/01621459.1995.10476626, J. Amer. Statist. Assoc. 90 (1995), no. 432, 1200–1224. Zbl0869.62024MR1379464DOI10.1080/01621459.1995.10476626
- Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D., Wavelet shrinkage: asymptopia? (with discussion), J. Royal Statist. Soc. Ser. B 57, 301–369. MR1323344
- Doosti H., Afshari M., Niroumand H.A., 10.1080/03610920701653003, Comm. Statist. Theory Methods 37 (2008), no. 3, 373–385. MR2432291DOI10.1080/03610920701653003
- Doosti H., Islam M.S., Chaubey Y.P., Gora P., Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system, Ital. J. Pure Appl. Math. 27 (2010), 39–62. MR2826252
- Doosti H., Niroumand H.A., Multivariate stochastic regression estimation by wavelets for stationary time series, Pakistan J. Statist. 25 (2009), no. 1, 37–46. MR2492520
- Doukhan P., 10.1007/978-1-4612-2642-0, Lecture Notes in Statistics, 85, Springer, New York, 1994. Zbl0801.60027MR1312160DOI10.1007/978-1-4612-2642-0
- Hall P., Turlach B.A., 10.1214/aos/1069362378, Ann. Statist. 25 (1997), 1912–1925. Zbl0881.62044MR1474074DOI10.1214/aos/1069362378
- Härdle W., Applied Nonparametric Regression, Cambridge University Press, Cambridge, 1990. Zbl0851.62028MR1161622
- Härdle W., Kerkyacharian G., Picard D., Tsybakov A., 10.1007/978-1-4612-2222-4, Lectures Notes in Statistics, 129, Springer, New York, 1998. MR1618204DOI10.1007/978-1-4612-2222-4
- Kerkyacharian G., Picard D., 10.1007/BF02595738, Test 9 (2000), no. 2, 283–344. Zbl1107.62323MR1821645DOI10.1007/BF02595738
- Kerkyacharian G., Picard D., 10.3150/bj/1106314850, Bernoulli 10 (2004), no. 6, 1053–1105. Zbl1067.62039MR2108043DOI10.3150/bj/1106314850
- Kulik R., Raimondo M., 10.1214/09-AOS684, Ann. Statist. 37 (2009), 3396–3430. MR2549564DOI10.1214/09-AOS684
- Liang H., 10.1007/s11424-010-8354-8, J. Syst. Sci. Complex. 24 (2011), no. 4, 725–737. Zbl1255.93136MR2835351DOI10.1007/s11424-010-8354-8
- Li Y.M., Guo J.H., 10.1016/j.jkss.2009.03.002, J. Korean Statist. Soc. 38 (2009), no. 4, 383–390. MR2582481DOI10.1016/j.jkss.2009.03.002
- Li Y.M., Yin C.D., Wei G.D., On the asymptotic normality for mixing dependent errors of wavelet regression function estimator, Acta Mathematicae Applicatae Sinica 31 (2008), 1046–1055. MR2509883
- Li L., Xiao Y., 10.1007/s10463-006-0048-6, Ann. Inst. Statist. Math. 59 (2007), 299–324. MR2394169DOI10.1007/s10463-006-0048-6
- Liebscher E., Estimation of the density and the regression function under mixing conditions, Statist. Decisions 19 (2001), no. 1, 9–26. Zbl1179.62051MR1817218
- Lütkepohl H., Multiple Time Series Analysis, Springer, Heidelberg, 1992. Zbl1141.62071
- Mallat S., A Wavelet Tour of Signal Processing. The Sparse Way, third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl1170.94003MR2479996
- Masry E., 10.1080/10485250008832809, J. Nonparametr. Statist. 12 (2000), no. 2, 283–308. Zbl0982.62038MR1752317DOI10.1080/10485250008832809
- Meyer Y., Wavelets and Operators, Cambridge University Press, Cambridge, 1992. Zbl0819.42016MR1228209
- Neumann M.H., von Sachs R., Wavelet thresholding: beyond the Gaussian i.i.d. situation, in: Antoniadis A. and Oppenheim G. (eds.), Wavelets and Statistics (Villard de Lans, 1994), Lecture Notes in Statistics, 103, Springer, New York, 1995, pp. 301–330. Zbl0831.62071MR1364677
- Patil P.N., Truong Y.K., 10.1023/A:1017928823619, Ann. Inst. Statist. Math. 53 (2001), no. 1, 159–178. Zbl0995.62092MR1820955DOI10.1023/A:1017928823619
- Pensky M., Sapatinas T., Frequentist optimality of Bayes factor estimators in wavelet regression models, Statist. Sinica 17 (2007), 599–633. Zbl1144.62004MR2408682
- Porto R.F., Morettin P.A., Aubin E.C.Q., 10.1016/j.spl.2008.03.015, Statist. Probab. Lett. 78 (2008), 2739–2743. Zbl1256.62019MR2465116DOI10.1016/j.spl.2008.03.015
- Roussas G.G., Nonparametric regression estimation under mixing conditions, Stochastic Process. Appl. 36 (1990), no. 1, 107–116. Zbl0699.62038MR1075604
- Tsybakov A.B., Introduction à l'estimation non-paramétrique, Springer, Berlin, 2004. Zbl1029.62034MR2013911
- Vidakovic B., Statistical Modeling by Wavelets, John Wiley & Sons, Inc., New York, 1999. Zbl0924.62032MR1681904
- White H., Domowitz, I., 10.2307/1911465, Econometrica 52 (1984), 143–162. MR0729213DOI10.2307/1911465
- Xue L.G., Uniform convergence rates of the wavelet estimator of regression function under mixing error, Acta Math. Ser. A Chi. Ed. 22 (2002), 528–535. Zbl1007.62039MR1942715
- Yang S.C., 10.1007/s10114-005-0841-9, Acta. Math. Sin. (Engl. Ser.) 23 (2007), 1013–1024. Zbl1121.60017MR2319611DOI10.1007/s10114-005-0841-9
- Zhang S., Zheng Z., 10.1007/BF02884269, Sci.China Ser. A 42 (1999), no. 8, 825–833. Zbl0938.62046MR1738553DOI10.1007/BF02884269
- Zhou X.C., Lin J.G., 10.1016/j.spl.2012.06.028, Statist. Probab. Lett. 82 (2012), no. 11, 1914–1922. MR2970292DOI10.1016/j.spl.2012.06.028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.