On the adaptive wavelet estimation of a multidimensional regression function under α -mixing dependence: Beyond the standard assumptions on the noise

Christophe Chesneau

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 4, page 527-556
  • ISSN: 0010-2628

Abstract

top
We investigate the estimation of a multidimensional regression function f from n observations of an α -mixing process ( Y , X ) , where Y = f ( X ) + ξ , X represents the design and ξ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of f in its construction) or it is supposed that ξ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on ξ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates of convergence under the mean integrated squared error over a wide class of functions f .

How to cite

top

Chesneau, Christophe. "On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 527-556. <http://eudml.org/doc/260751>.

@article{Chesneau2013,
abstract = {We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha $-mixing process $(Y,X)$, where $Y=f(X)+\xi $, $X$ represents the design and $\xi $ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi $ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi $ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates of convergence under the mean integrated squared error over a wide class of functions $f$.},
author = {Chesneau, Christophe},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonparametric regression; $\alpha $-mixing dependence; adaptive estimation; wavelet methods; rates of convergence; nonparametric regression; -mixing dependence; wavelet methods; rate of convergence; adaptive estimation},
language = {eng},
number = {4},
pages = {527-556},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise},
url = {http://eudml.org/doc/260751},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Chesneau, Christophe
TI - On the adaptive wavelet estimation of a multidimensional regression function under $\alpha $-mixing dependence: Beyond the standard assumptions on the noise
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 527
EP - 556
AB - We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha $-mixing process $(Y,X)$, where $Y=f(X)+\xi $, $X$ represents the design and $\xi $ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi $ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi $ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates of convergence under the mean integrated squared error over a wide class of functions $f$.
LA - eng
KW - nonparametric regression; $\alpha $-mixing dependence; adaptive estimation; wavelet methods; rates of convergence; nonparametric regression; -mixing dependence; wavelet methods; rate of convergence; adaptive estimation
UR - http://eudml.org/doc/260751
ER -

References

top
  1. Antoniadis A., 10.1007/BF03178905, J. Italian Statistical Society Series B 6 (1997), 97–144. DOI10.1007/BF03178905
  2. Antoniadis A., Grégoire G., Vial P., 10.1016/S0167-7152(97)00017-5, Statist. Probab. Lett. 35 (1997), 225–232. Zbl0889.62029MR1484959DOI10.1016/S0167-7152(97)00017-5
  3. Antoniadis A., Bigot J., Sapatinas T., Wavelet estimators in nonparametric regression: a comparative simulation study, J. Statist. Software 6 (2001), no. 6. 
  4. Antoniadis A., Leporini D.. Pesquet J.-C., 10.1111/1467-9574.00211, Statist. Neerlandica 56 (2002), no. 4, 434–453. MR2027535DOI10.1111/1467-9574.00211
  5. Baraud Y., Comte F., Viennet G., Adaptive estimation in autoregression or β -mixing regression via model selection, Ann. Statist. 29 (2001), no. 3, 839–875. Zbl1012.62034MR1865343
  6. Benatia F., Yahia D., Nonlinear wavelet regression function estimator for censored dependent data, J. Afr. Stat. 7 (2012), 391–411. Zbl1258.62046MR3034386
  7. Beran J., Shumeyko Y., 10.3150/10-BEJ332, Bernoulli 18 (2012), no. 1, 137–176. Zbl1235.62124MR2888702DOI10.3150/10-BEJ332
  8. Bochkina N., Sapatinas T., Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks, Statist. Sinica 19 (2009), 1389–1406. Zbl1191.62069MR2589188
  9. Bradley R.C., Introduction to Strong Mixing Conditions, Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007. Zbl1134.60004MR2325294
  10. Cai T., Adaptive wavelet estimation: a block thresholding and oracle inequality approach, Ann. Statist. 27 (1999), 898–924. Zbl0954.62047MR1724035
  11. Cai, T., On block thresholding in wavelet regression: adaptivity, block size and threshold level, Statist. Sinica 12 (2002), 1241–1273. Zbl1004.62036MR1947074
  12. Cai T., Brown L.D., 10.1214/aos/1024691357, Ann. Statist. 26 (1998), 1783–1799. Zbl0929.62047MR1673278DOI10.1214/aos/1024691357
  13. Cai T., Brown L.D., 10.1016/S0167-7152(98)00223-5, Statist. Probab. Lett. 42 (1999), 313–321. Zbl0940.62037MR1688134DOI10.1016/S0167-7152(98)00223-5
  14. Carrasco M., Chen X., 10.1017/S0266466602181023, Econometric Theory 18 (2002), 17–39. Zbl1181.62125MR1885348DOI10.1017/S0266466602181023
  15. Chaubey Y.P., Shirazi E., On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing, Comm. Statist. Theory Methods(to appear). 
  16. Chaubey Y.P., Chesneau C., Shirazi E., 10.1080/10485252.2012.734619, J. Nonparametr. Stat. 25 (2013), no. 1, 53–71. MR3039970DOI10.1080/10485252.2012.734619
  17. Chesneau C., 10.1016/j.spl.2006.05.010, Statist. Probab. Lett. 77 (2007), no. 1, 40–53. Zbl1109.62028MR2339017DOI10.1016/j.spl.2006.05.010
  18. Chesneau C., Adaptive wavelet regression in random design and general errors with weakly dependent data, Acta Univ. Apulensis Math. Inform 29 (2012), 65–84. MR3015056
  19. Chesneau C., Fadili J., 10.1007/s10182-011-0157-2, AStA Adv. Stat. Anal. 96 (2012), no. 1, 25–46. MR2878037DOI10.1007/s10182-011-0157-2
  20. Chesneau C., Shirazi E., Nonparametric wavelet regression based on biased data, Comm. Statist. Theory Methods(to appear). 
  21. Chesneau C., Kachour M., Navarro F., A note on the adaptive estimation of a quadratic functional from dependent observations, IStatistik: Journal of the Turkish Statistical Association 6 (2013), no. 1, 10–26. MR3086320
  22. Clyde M.A., George E.I., 10.1007/978-1-4612-0567-8_19, in Bayesian Inference in Wavelet-based Models, Lecture Notes in Statistics, 141, Springer, New York, 1999, pp. 309-322. Zbl0936.62008MR1699849DOI10.1007/978-1-4612-0567-8_19
  23. Cohen A., Daubechies I., Jawerth B., Vial P., 10.1006/acha.1993.1005, Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. MR1256527DOI10.1006/acha.1993.1005
  24. Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. Zbl1006.42030MR1162107
  25. Davydov Y., 10.1137/1115050, Theor. Probab. Appl. 15 (1970), no. 3, 498–509. Zbl0219.60030MR0283872DOI10.1137/1115050
  26. Delouille V., Franke J., von Sachs R., Nonparametric stochastic regression with design-adapted wavelets, Sankhya Ser. A 63 (2001), 328–366. Zbl1192.62115MR1897046
  27. Delyon B., Juditsky A., 10.1006/acha.1996.0017, Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl0865.62023MR1400080DOI10.1006/acha.1996.0017
  28. DeVore R., Popov V., 10.1090/S0002-9947-1988-0920166-3, Trans. Amer. Math. Soc. 305 (1998), 397–414. Zbl0646.46030MR0920166DOI10.1090/S0002-9947-1988-0920166-3
  29. Donoho D.L., Johnstone I.M., 10.1093/biomet/81.3.425, Biometrika 81 (1994), 425–455. Zbl0815.62019MR1311089DOI10.1093/biomet/81.3.425
  30. Donoho D.L., Johnstone I.M., 10.1080/01621459.1995.10476626, J. Amer. Statist. Assoc. 90 (1995), no. 432, 1200–1224. Zbl0869.62024MR1379464DOI10.1080/01621459.1995.10476626
  31. Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D., Wavelet shrinkage: asymptopia? (with discussion), J. Royal Statist. Soc. Ser. B 57, 301–369. MR1323344
  32. Doosti H., Afshari M., Niroumand H.A., 10.1080/03610920701653003, Comm. Statist. Theory Methods 37 (2008), no. 3, 373–385. MR2432291DOI10.1080/03610920701653003
  33. Doosti H., Islam M.S., Chaubey Y.P., Gora P., Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system, Ital. J. Pure Appl. Math. 27 (2010), 39–62. MR2826252
  34. Doosti H., Niroumand H.A., Multivariate stochastic regression estimation by wavelets for stationary time series, Pakistan J. Statist. 25 (2009), no. 1, 37–46. MR2492520
  35. Doukhan P., 10.1007/978-1-4612-2642-0, Lecture Notes in Statistics, 85, Springer, New York, 1994. Zbl0801.60027MR1312160DOI10.1007/978-1-4612-2642-0
  36. Hall P., Turlach B.A., 10.1214/aos/1069362378, Ann. Statist. 25 (1997), 1912–1925. Zbl0881.62044MR1474074DOI10.1214/aos/1069362378
  37. Härdle W., Applied Nonparametric Regression, Cambridge University Press, Cambridge, 1990. Zbl0851.62028MR1161622
  38. Härdle W., Kerkyacharian G., Picard D., Tsybakov A., 10.1007/978-1-4612-2222-4, Lectures Notes in Statistics, 129, Springer, New York, 1998. MR1618204DOI10.1007/978-1-4612-2222-4
  39. Kerkyacharian G., Picard D., 10.1007/BF02595738, Test 9 (2000), no. 2, 283–344. Zbl1107.62323MR1821645DOI10.1007/BF02595738
  40. Kerkyacharian G., Picard D., 10.3150/bj/1106314850, Bernoulli 10 (2004), no. 6, 1053–1105. Zbl1067.62039MR2108043DOI10.3150/bj/1106314850
  41. Kulik R., Raimondo M., 10.1214/09-AOS684, Ann. Statist. 37 (2009), 3396–3430. MR2549564DOI10.1214/09-AOS684
  42. Liang H., 10.1007/s11424-010-8354-8, J. Syst. Sci. Complex. 24 (2011), no. 4, 725–737. Zbl1255.93136MR2835351DOI10.1007/s11424-010-8354-8
  43. Li Y.M., Guo J.H., 10.1016/j.jkss.2009.03.002, J. Korean Statist. Soc. 38 (2009), no. 4, 383–390. MR2582481DOI10.1016/j.jkss.2009.03.002
  44. Li Y.M., Yin C.D., Wei G.D., On the asymptotic normality for mixing dependent errors of wavelet regression function estimator, Acta Mathematicae Applicatae Sinica 31 (2008), 1046–1055. MR2509883
  45. Li L., Xiao Y., 10.1007/s10463-006-0048-6, Ann. Inst. Statist. Math. 59 (2007), 299–324. MR2394169DOI10.1007/s10463-006-0048-6
  46. Liebscher E., Estimation of the density and the regression function under mixing conditions, Statist. Decisions 19 (2001), no. 1, 9–26. Zbl1179.62051MR1817218
  47. Lütkepohl H., Multiple Time Series Analysis, Springer, Heidelberg, 1992. Zbl1141.62071
  48. Mallat S., A Wavelet Tour of Signal Processing. The Sparse Way, third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl1170.94003MR2479996
  49. Masry E., 10.1080/10485250008832809, J. Nonparametr. Statist. 12 (2000), no. 2, 283–308. Zbl0982.62038MR1752317DOI10.1080/10485250008832809
  50. Meyer Y., Wavelets and Operators, Cambridge University Press, Cambridge, 1992. Zbl0819.42016MR1228209
  51. Neumann M.H., von Sachs R., Wavelet thresholding: beyond the Gaussian i.i.d. situation, in: Antoniadis A. and Oppenheim G. (eds.), Wavelets and Statistics (Villard de Lans, 1994), Lecture Notes in Statistics, 103, Springer, New York, 1995, pp. 301–330. Zbl0831.62071MR1364677
  52. Patil P.N., Truong Y.K., 10.1023/A:1017928823619, Ann. Inst. Statist. Math. 53 (2001), no. 1, 159–178. Zbl0995.62092MR1820955DOI10.1023/A:1017928823619
  53. Pensky M., Sapatinas T., Frequentist optimality of Bayes factor estimators in wavelet regression models, Statist. Sinica 17 (2007), 599–633. Zbl1144.62004MR2408682
  54. Porto R.F., Morettin P.A., Aubin E.C.Q., 10.1016/j.spl.2008.03.015, Statist. Probab. Lett. 78 (2008), 2739–2743. Zbl1256.62019MR2465116DOI10.1016/j.spl.2008.03.015
  55. Roussas G.G., Nonparametric regression estimation under mixing conditions, Stochastic Process. Appl. 36 (1990), no. 1, 107–116. Zbl0699.62038MR1075604
  56. Tsybakov A.B., Introduction à l'estimation non-paramétrique, Springer, Berlin, 2004. Zbl1029.62034MR2013911
  57. Vidakovic B., Statistical Modeling by Wavelets, John Wiley & Sons, Inc., New York, 1999. Zbl0924.62032MR1681904
  58. White H., Domowitz, I., 10.2307/1911465, Econometrica 52 (1984), 143–162. MR0729213DOI10.2307/1911465
  59. Xue L.G., Uniform convergence rates of the wavelet estimator of regression function under mixing error, Acta Math. Ser. A Chi. Ed. 22 (2002), 528–535. Zbl1007.62039MR1942715
  60. Yang S.C., 10.1007/s10114-005-0841-9, Acta. Math. Sin. (Engl. Ser.) 23 (2007), 1013–1024. Zbl1121.60017MR2319611DOI10.1007/s10114-005-0841-9
  61. Zhang S., Zheng Z., 10.1007/BF02884269, Sci.China Ser. A 42 (1999), no. 8, 825–833. Zbl0938.62046MR1738553DOI10.1007/BF02884269
  62. Zhou X.C., Lin J.G., 10.1016/j.spl.2012.06.028, Statist. Probab. Lett. 82 (2012), no. 11, 1914–1922. MR2970292DOI10.1016/j.spl.2012.06.028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.