On the natural transformations of Weil bundles

Ivan Kolář

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 5, page 303-308
  • ISSN: 0044-8753

Abstract

top
First we deduce some general results on the covariant form of the natural transformations of Weil functors. Then we discuss several geometric properties of these transformations, special attention being paid to vector bundles and principal bundles.

How to cite

top

Kolář, Ivan. "On the natural transformations of Weil bundles." Archivum Mathematicum 049.5 (2013): 303-308. <http://eudml.org/doc/260764>.

@article{Kolář2013,
abstract = {First we deduce some general results on the covariant form of the natural transformations of Weil functors. Then we discuss several geometric properties of these transformations, special attention being paid to vector bundles and principal bundles.},
author = {Kolář, Ivan},
journal = {Archivum Mathematicum},
keywords = {Weil functor; natural transformation of Weil bundles; Weil functor; natural transformation of Weil bundles},
language = {eng},
number = {5},
pages = {303-308},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the natural transformations of Weil bundles},
url = {http://eudml.org/doc/260764},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Kolář, Ivan
TI - On the natural transformations of Weil bundles
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 303
EP - 308
AB - First we deduce some general results on the covariant form of the natural transformations of Weil functors. Then we discuss several geometric properties of these transformations, special attention being paid to vector bundles and principal bundles.
LA - eng
KW - Weil functor; natural transformation of Weil bundles; Weil functor; natural transformation of Weil bundles
UR - http://eudml.org/doc/260764
ER -

References

top
  1. Ehresmann, C., Oeuvres complètes et commentés, Parties I–1 et I–2, Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983). (1983) 
  2. Kolář, I., Affine structures on Weil bundles, Nagoya Math. J. 158 (2000), 99–106. (2000) 
  3. Kolář, I., Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625–664, Elsevier, Amsterdam, 2008. (2008) MR2389643
  4. Kolář, I., On the functorial prolongations of fiber bundles, Proceedings of AGMP 8, 2012. (2012) 
  5. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) 
  6. Weil, A., Théorie des points proches sur les variétées différentiables, Colloques internat. Centre nat. Rech. Sci. 52 (1953), 111–117. (1953) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.