A sharp maximal inequality for continuous martingales and their differential subordinates
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 1001-1018
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topOsękowski, Adam. "A sharp maximal inequality for continuous martingales and their differential subordinates." Czechoslovak Mathematical Journal 63.4 (2013): 1001-1018. <http://eudml.org/doc/260767>.
@article{Osękowski2013,
abstract = {Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb \{R\}^\nu $, $\nu \ge 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality \[ \Vert \sup \_\{t\ge 0\} |Y\_t| \Vert \_1\le 2\Vert \sup \_\{t\ge 0\} |X\_t| \Vert \_1. \]
The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.},
author = {Osękowski, Adam},
journal = {Czechoslovak Mathematical Journal},
keywords = {martingale; stochastic integral; maximal inequality; differential subordination; martingale; stochastic integral; maximal inequality; differential subordination},
language = {eng},
number = {4},
pages = {1001-1018},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharp maximal inequality for continuous martingales and their differential subordinates},
url = {http://eudml.org/doc/260767},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Osękowski, Adam
TI - A sharp maximal inequality for continuous martingales and their differential subordinates
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1001
EP - 1018
AB - Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb {R}^\nu $, $\nu \ge 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality \[ \Vert \sup _{t\ge 0} |Y_t| \Vert _1\le 2\Vert \sup _{t\ge 0} |X_t| \Vert _1. \]
The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.
LA - eng
KW - martingale; stochastic integral; maximal inequality; differential subordination; martingale; stochastic integral; maximal inequality; differential subordination
UR - http://eudml.org/doc/260767
ER -
References
top- Bañuelos, R., Méndez-Hernandez, P. J., 10.1512/iumj.2003.52.2218, Indiana Univ. Math. J. 52 (2003), 981-990. (2003) Zbl1080.60043MR2001941DOI10.1512/iumj.2003.52.2218
- Bañuelos, R., Wang, G., 10.1215/S0012-7094-95-08020-X, Duke Math. J. 80 (1995), 575-600. (1995) Zbl0853.60040MR1370109DOI10.1215/S0012-7094-95-08020-X
- Burkholder, D. L., 10.1214/aop/1176993220, Ann. Probab. 12 (1984), 647-702. (1984) Zbl0556.60021MR0744226DOI10.1214/aop/1176993220
- Burkholder, D. L., 10.1214/aop/1176992268, Ann. Probab. 15 (1987), 268-273. (1987) MR0877602DOI10.1214/aop/1176992268
- Burkholder, D. L., 10.1007/BFb0085167, Calcul des Probabilités Ec. d'Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464 1-66 (1991), Springer, Berlin. (1991) Zbl0771.60033MR1108183DOI10.1007/BFb0085167
- Burkholder, D. L., Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) 343-358 Proc. Sympos. Appl. Math., 52, Amer. Math. Soc. Providence, RI (1997). (1997) Zbl0899.60040MR1440921
- Dellacherie, C., Meyer, P. A., Probabilities and Potential. B: Theory of Martingales, Transl. from the French and prep. by J. P. Wilson North-Holland Mathematics Studies, Amsterdam (1982). (1982) Zbl0494.60002MR0745449
- Geiss, S., Montgomery-Smith, S., Saksman, E., 10.1090/S0002-9947-09-04953-8, Trans. Am. Math. Soc. 362 (2010), 553-575. (2010) Zbl1196.60078MR2551497DOI10.1090/S0002-9947-09-04953-8
- Nazarov, F. L., Volberg, A., Heat extension of the Beurling operator and estimates for its norm, Algebra i Analiz 15 (2003), 142-158 Russian translation in St. Petersburg Math. J. 15 (2004), 563-573. (2004) MR2068982
- Osękowski, A., 10.1215/ijm/1254403712, Illinois J. Math. 52 (2008), 745-756. (2008) MR2546005DOI10.1215/ijm/1254403712
- Osękowski, A., 10.1215/ijm/1336049987, Illinois J. Math. 54 (2010), 1133-1156. (2010) Zbl1260.60081MR2928348DOI10.1215/ijm/1336049987
- Osękowski, A., 10.1090/S0002-9939-2010-10539-7, Proc. Am. Math. Soc. 139 (2011), 721-734. (2011) Zbl1219.60044MR2736351DOI10.1090/S0002-9939-2010-10539-7
- Osękowski, A., 10.1007/s10959-012-0458-8, (to appear) in J. Theor. Probab. DOI:10.1007/s10959-012-0458-8. DOI10.1007/s10959-012-0458-8
- Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren der Mathematischen Wissenschaften 293 Springer, Berlin, 1999. Zbl1087.60040MR1725357
- Suh, Y., 10.1090/S0002-9947-04-03563-9, Trans. Am. Math. Soc. 357 (2005), 1545-1564. (2005) Zbl1061.60042MR2115376DOI10.1090/S0002-9947-04-03563-9
- Wang, G., 10.1214/aop/1176988278, Ann. Probab. 23 (1995), 522-551. (1995) Zbl0832.60055MR1334160DOI10.1214/aop/1176988278
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.