A sharp maximal inequality for continuous martingales and their differential subordinates

Adam Osękowski

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 4, page 1001-1018
  • ISSN: 0011-4642

Abstract

top
Assume that X , Y are continuous-path martingales taking values in ν , ν 1 , such that Y is differentially subordinate to X . The paper contains the proof of the maximal inequality sup t 0 | Y t | 1 2 sup t 0 | X t | 1 . The constant 2 is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.

How to cite

top

Osękowski, Adam. "A sharp maximal inequality for continuous martingales and their differential subordinates." Czechoslovak Mathematical Journal 63.4 (2013): 1001-1018. <http://eudml.org/doc/260767>.

@article{Osękowski2013,
abstract = {Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb \{R\}^\nu $, $\nu \ge 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality \[ \Vert \sup \_\{t\ge 0\} |Y\_t| \Vert \_1\le 2\Vert \sup \_\{t\ge 0\} |X\_t| \Vert \_1. \] The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.},
author = {Osękowski, Adam},
journal = {Czechoslovak Mathematical Journal},
keywords = {martingale; stochastic integral; maximal inequality; differential subordination; martingale; stochastic integral; maximal inequality; differential subordination},
language = {eng},
number = {4},
pages = {1001-1018},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharp maximal inequality for continuous martingales and their differential subordinates},
url = {http://eudml.org/doc/260767},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Osękowski, Adam
TI - A sharp maximal inequality for continuous martingales and their differential subordinates
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1001
EP - 1018
AB - Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb {R}^\nu $, $\nu \ge 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality \[ \Vert \sup _{t\ge 0} |Y_t| \Vert _1\le 2\Vert \sup _{t\ge 0} |X_t| \Vert _1. \] The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.
LA - eng
KW - martingale; stochastic integral; maximal inequality; differential subordination; martingale; stochastic integral; maximal inequality; differential subordination
UR - http://eudml.org/doc/260767
ER -

References

top
  1. Bañuelos, R., Méndez-Hernandez, P. J., 10.1512/iumj.2003.52.2218, Indiana Univ. Math. J. 52 (2003), 981-990. (2003) Zbl1080.60043MR2001941DOI10.1512/iumj.2003.52.2218
  2. Bañuelos, R., Wang, G., 10.1215/S0012-7094-95-08020-X, Duke Math. J. 80 (1995), 575-600. (1995) Zbl0853.60040MR1370109DOI10.1215/S0012-7094-95-08020-X
  3. Burkholder, D. L., 10.1214/aop/1176993220, Ann. Probab. 12 (1984), 647-702. (1984) Zbl0556.60021MR0744226DOI10.1214/aop/1176993220
  4. Burkholder, D. L., 10.1214/aop/1176992268, Ann. Probab. 15 (1987), 268-273. (1987) MR0877602DOI10.1214/aop/1176992268
  5. Burkholder, D. L., 10.1007/BFb0085167, Calcul des Probabilités Ec. d'Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464 1-66 (1991), Springer, Berlin. (1991) Zbl0771.60033MR1108183DOI10.1007/BFb0085167
  6. Burkholder, D. L., Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) 343-358 Proc. Sympos. Appl. Math., 52, Amer. Math. Soc. Providence, RI (1997). (1997) Zbl0899.60040MR1440921
  7. Dellacherie, C., Meyer, P. A., Probabilities and Potential. B: Theory of Martingales, Transl. from the French and prep. by J. P. Wilson North-Holland Mathematics Studies, Amsterdam (1982). (1982) Zbl0494.60002MR0745449
  8. Geiss, S., Montgomery-Smith, S., Saksman, E., 10.1090/S0002-9947-09-04953-8, Trans. Am. Math. Soc. 362 (2010), 553-575. (2010) Zbl1196.60078MR2551497DOI10.1090/S0002-9947-09-04953-8
  9. Nazarov, F. L., Volberg, A., Heat extension of the Beurling operator and estimates for its norm, Algebra i Analiz 15 (2003), 142-158 Russian translation in St. Petersburg Math. J. 15 (2004), 563-573. (2004) MR2068982
  10. Osękowski, A., 10.1215/ijm/1254403712, Illinois J. Math. 52 (2008), 745-756. (2008) MR2546005DOI10.1215/ijm/1254403712
  11. Osękowski, A., 10.1215/ijm/1336049987, Illinois J. Math. 54 (2010), 1133-1156. (2010) Zbl1260.60081MR2928348DOI10.1215/ijm/1336049987
  12. Osękowski, A., 10.1090/S0002-9939-2010-10539-7, Proc. Am. Math. Soc. 139 (2011), 721-734. (2011) Zbl1219.60044MR2736351DOI10.1090/S0002-9939-2010-10539-7
  13. Osękowski, A., 10.1007/s10959-012-0458-8, (to appear) in J. Theor. Probab. DOI:10.1007/s10959-012-0458-8. DOI10.1007/s10959-012-0458-8
  14. Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren der Mathematischen Wissenschaften 293 Springer, Berlin, 1999. Zbl1087.60040MR1725357
  15. Suh, Y., 10.1090/S0002-9947-04-03563-9, Trans. Am. Math. Soc. 357 (2005), 1545-1564. (2005) Zbl1061.60042MR2115376DOI10.1090/S0002-9947-04-03563-9
  16. Wang, G., 10.1214/aop/1176988278, Ann. Probab. 23 (1995), 522-551. (1995) Zbl0832.60055MR1334160DOI10.1214/aop/1176988278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.