Wakamatsu tilting modules with finite injective dimension
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 865-876
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Guoqiang, and Yin, Lirong. "Wakamatsu tilting modules with finite injective dimension." Czechoslovak Mathematical Journal 63.4 (2013): 865-876. <http://eudml.org/doc/260786>.
@article{Zhao2013,
abstract = {Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S=\{\rm End\}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\ge 0$, we prove that $\{\rm l.id\}_R(\omega ) = \{\rm r.id\}_S(\omega )\le n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.},
author = {Zhao, Guoqiang, Yin, Lirong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal \{X\}$-resolution dimension; injective dimension; $\omega $-torsionless property; Wakamatsu tilting modules; injective dimension; generalized tilting modules; torsionfree dimension; finitely generated left modules; generalized Gorenstein dimension},
language = {eng},
number = {4},
pages = {865-876},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Wakamatsu tilting modules with finite injective dimension},
url = {http://eudml.org/doc/260786},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Zhao, Guoqiang
AU - Yin, Lirong
TI - Wakamatsu tilting modules with finite injective dimension
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 865
EP - 876
AB - Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\ge 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\le n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
LA - eng
KW - Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property; Wakamatsu tilting modules; injective dimension; generalized tilting modules; torsionfree dimension; finitely generated left modules; generalized Gorenstein dimension
UR - http://eudml.org/doc/260786
ER -
References
top- Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94 AMS, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Auslander, M., Buchweitz, R.-O., The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. (1989) Zbl0697.13005MR1044344
- Auslander, M., Reiten, I., Cohen-Macaulay and Gorenstein Artin algebras, Representation Theory of Finite Groups and Finite-Dimensional Algebras G. O. Michler et al. Proc. Conf., Bielefeld/Ger. 1991, Prog. Math. 95 Birkhäuser, Basel (1991), 221-245. (1991) Zbl0776.16003MR1112162
- Beligiannis, A., Reiten, I., Homological and Homotopical Aspects of Torsion Theories, Memoirs of the American Mathematical Society 883 AMS, Providence (2007). (2007) Zbl1124.18005MR2327478
- Bennis, D., Mahdou, N., 10.1090/S0002-9939-09-10099-0, Proc. Am. Math. Soc. 138 (2010), 461-465. (2010) Zbl1205.16007MR2557164DOI10.1090/S0002-9939-09-10099-0
- Göbel, R., Trlifaj, J., Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics 41 Walter de Gruyter, Berlin (2006). (2006) Zbl1121.16002MR2251271
- Hoshino, M., 10.1090/S0002-9939-1991-1047011-8, Proc. Am. Math. Soc. 112 (1991), 619-622. (1991) Zbl0737.16003MR1047011DOI10.1090/S0002-9939-1991-1047011-8
- Huang, Z., 10.1007/BF02874420, Sci. China, Ser. A 44 (2001), 184-192. (2001) Zbl1054.16002MR1824318DOI10.1007/BF02874420
- Huang, Z., 10.1016/j.jalgebra.2006.11.025, J. Algebra 311 (2007), 619-634. (2007) Zbl1130.16008MR2314727DOI10.1016/j.jalgebra.2006.11.025
- Huang, Z., 10.1007/s10468-009-9157-2, Algebr. Represent. Theory 12 (2009), 371-384. (2009) Zbl1171.16006MR2501192DOI10.1007/s10468-009-9157-2
- Huang, Z., Wakamatsu tilting modules, -dominant dimension, and -Gorenstein modules, Abelian Groups, Rings, Modules, and Homological Algebra Lecture Notes in Pure and Applied Mathematics 249. Selected papers of a conference on the occasion of Edgar Earle Enochs' 72nd birthday, Auburn, AL, USA, September 9-11, 2004 P. Goeters et al. Chapman & Hall/CRC (2006), 183-202. (2006) Zbl1102.16006MR2229112
- Huang, Z., Tang, G., 10.1016/S0022-4049(00)00109-2, J. Pure Appl. Algebra 161 (2001), 167-176. (2001) Zbl0989.16005MR1834083DOI10.1016/S0022-4049(00)00109-2
- Mantese, F., Reiten, I., 10.1016/j.jalgebra.2004.03.023, J. Algebra 278 (2004), 532-552. (2004) Zbl1075.16006MR2071651DOI10.1016/j.jalgebra.2004.03.023
- Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics 85 Academic Press, New York (1979). (1979) Zbl0441.18018MR0538169
- Wakamatsu, T., 10.1016/j.jalgebra.2003.12.008, J. Algebra 275 (2004), 3-39. (2004) Zbl1076.16006MR2047438DOI10.1016/j.jalgebra.2003.12.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.