A note on almost sure convergence and convergence in measure
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 29-40
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKříž, P., and Štěpán, Josef. "A note on almost sure convergence and convergence in measure." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 29-40. <http://eudml.org/doc/260791>.
@article{Kříž2014,
abstract = {The present article studies the
conditions under which the almost
everywhere convergence and the
convergence in measure coincide.
An application in the statistical
estimation theory is outlined as
well.},
author = {Kříž, P., Štěpán, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators; convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators},
language = {eng},
number = {1},
pages = {29-40},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on almost sure convergence and convergence in measure},
url = {http://eudml.org/doc/260791},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Kříž, P.
AU - Štěpán, Josef
TI - A note on almost sure convergence and convergence in measure
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 29
EP - 40
AB - The present article studies the
conditions under which the almost
everywhere convergence and the
convergence in measure coincide.
An application in the statistical
estimation theory is outlined as
well.
LA - eng
KW - convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators; convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators
UR - http://eudml.org/doc/260791
ER -
References
top- Asanov M.O., Veličko N.V., Kompaktnye množestva v , Comment. Math. Univ. Carolinae 22 (1981), 255–266.
- Blackwell D., 10.1214/aop/1176994581, Ann. Probability 8 (1980), 1189–1190. Zbl0451.28001MR0602393DOI10.1214/aop/1176994581
- Dunford N., Schwartz J.T., Linear Operators Part I: General Theory, John Wiley & Sons, Inc., New Jersey, 1988. Zbl0635.47001MR1009162
- Fremlin D.H., Measure Theory, Vol 4, Topological Measure Spaces, Colchester: Torres Fremlin, 2003. Zbl1166.28001MR2462372
- Ionescu Tulcea A., 10.1007/BF00532722, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 26 (1973), 197–205. MR0405102DOI10.1007/BF00532722
- Ionescu Tulcea A., 10.1016/S0001-8708(74)80002-2, Advances in Math. 12 (1974), 171–177. Zbl0301.46032MR0405103DOI10.1016/S0001-8708(74)80002-2
- Kelley J.L., General Topology, Springer, New York, 1975. Zbl0518.54001MR0370454
- Kříž P., How to construct Borel measurable PLIFs?, WDS'11 Proc. of Contr. Papers, Part I, (2011), 43–48.
- Štěpán J., 10.1214/aop/1176996899, Ann. Probability 1 (1973), 712–715. Zbl0263.60013MR0356196DOI10.1214/aop/1176996899
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.