Control Systems on the Orthogonal Group SO(4)

Ross M. Adams; Rory Biggs; Claudiu C. Remsing

Communications in Mathematics (2013)

  • Volume: 21, Issue: 2, page 107-128
  • ISSN: 1804-1388

Abstract

top
We classify the left-invariant control affine systems evolving on the orthogonal group S O ( 4 ) . The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.

How to cite

top

Adams, Ross M., Biggs, Rory, and Remsing, Claudiu C.. "Control Systems on the Orthogonal Group SO(4)." Communications in Mathematics 21.2 (2013): 107-128. <http://eudml.org/doc/260803>.

@article{Adams2013,
abstract = {We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.},
author = {Adams, Ross M., Biggs, Rory, Remsing, Claudiu C.},
journal = {Communications in Mathematics},
keywords = {left-invariant control system; detached feedback equivalence; orthogonal group; left-invariant control system; detached feedback equivalence; orthogonal group},
language = {eng},
number = {2},
pages = {107-128},
publisher = {University of Ostrava},
title = {Control Systems on the Orthogonal Group SO(4)},
url = {http://eudml.org/doc/260803},
volume = {21},
year = {2013},
}

TY - JOUR
AU - Adams, Ross M.
AU - Biggs, Rory
AU - Remsing, Claudiu C.
TI - Control Systems on the Orthogonal Group SO(4)
JO - Communications in Mathematics
PY - 2013
PB - University of Ostrava
VL - 21
IS - 2
SP - 107
EP - 128
AB - We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
LA - eng
KW - left-invariant control system; detached feedback equivalence; orthogonal group; left-invariant control system; detached feedback equivalence; orthogonal group
UR - http://eudml.org/doc/260803
ER -

References

top
  1. Adams, R.M., Biggs, R., Remsing, C.C., On the equivalence of control systems on the orthogonal group SO(4), Recent Researches in Automatic Control, Systems Science and Communications, 2012, 54-59, WSEAS Press. (2012) MR2881500
  2. Adams, R.M., Biggs, R., Remsing, C.C., Equivalence of control systems on the Euclidean group SE(2), Control Cybernet., 41, 2012, 513-524. (2012) MR3087026
  3. Agrachev, A.A., Sachkov, Y.L., Control Theory from the Geometric Viewpoint, 2004, Springer. (2004) Zbl1062.93001MR2062547
  4. Aron, A., Moş, I., Csaky, A., Puta, M., 10.1142/S0219887808002795, Int. J. Geom. Methods Mod. Phys., 5, 2008, 319-327. (2008) Zbl1159.49002MR2422030DOI10.1142/S0219887808002795
  5. Biggs, J.D., Holderbaum, W., 10.1109/TAC.2007.899010, IEEE Trans. Automat. Control, 52, 2007, 1027-1038. (2007) MR2329893DOI10.1109/TAC.2007.899010
  6. Biggs, R., Remsing, C.C., A category of control systems, An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368. (2012) Zbl1274.93062MR2928428
  7. Biggs, R., Remsing, C.C., A note on the affine subspaces of three-dimensional Lie algebras, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3, 2012, 45-52. (2012) MR3155842
  8. Biggs, R., Remsing, C.C., On the equivalence of cost-extended control systems on Lie groups, Recent Researches in Automatic Control, Systems Science and Communications, 2012, 60-65, WSEAS Press. (2012) 
  9. Biggs, R., Remsing, C.C., Control affine systems on semisimple three-dimensional Lie groups, An. Ştiinţe. Univ. Al. I. Cuza Iaşi. Mat., 59, 2013, 399-414. (2013) 
  10. Biggs, R., Remsing, C.C., Cost-extended control systems on Lie groups, Mediterr. J. Math., To appear in Mediterr. J. Math. DOI: 10.1007/s00009-013-0355-0. 
  11. Biggs, R., Remsing, C.C., Equivalence of control systems on the pseudo-orthogonal group S O ( 2 , 1 ) 0 , preprint. 
  12. Biggs, R., Remsing, C.C., On the equivalence of control systems on Lie groups, preprint. 
  13. Birtea, P., Caşu, I., Raţiu, T.S., Turhan, M., 10.1007/s00332-011-9113-2, J. Nonlinear Sci., 22, 2012, 187-212. (2012) MR2912325DOI10.1007/s00332-011-9113-2
  14. Bogoyavlensky, O.I., 10.1007/BF01258538, Commun. Math. Phys., 93, 1984, 417-436. (1984) MR0745694DOI10.1007/BF01258538
  15. D'Alessandro, D., 10.1109/9.981724, IEEE Trans. Automat. Control, 47, 2002, 87-92. (2002) MR1879692DOI10.1109/9.981724
  16. Isidori, A., Nonlinear Control Systems (Third Edition), 1995, Springer. (1995) 
  17. Jakubczyk, B., Equivalence and invariants of nonlinear control systems, Nonlinear Controllability and Optimal Control, 1990, 177-218, Marcel Dekker. (1990) Zbl0712.93027MR1061386
  18. Jovanović, B., 10.1088/0305-4470/31/5/011, J. Phys. A: Math. Gen., 31, 1998, 1415-1422. (1998) Zbl0945.70014MR1628570DOI10.1088/0305-4470/31/5/011
  19. Jurdjevic, V., Geometric Control Theory, 1997, Cambridge University Press. (1997) Zbl0940.93005MR1425878
  20. Jurdjevic, V., Sussmann, H.J., 10.1016/0022-0396(72)90035-6, J. Diff. Equations, 12, 1972, 313-329. (1972) Zbl0237.93027MR0331185DOI10.1016/0022-0396(72)90035-6
  21. Knapp, A. W., Lie Groups Beyond an Introduction (Second Edition), 2005, Birkhäuser. (2005) MR1920389
  22. Komarov, I.V., Kuznetsov, V.B., 10.1088/0305-4470/23/6/010, J. Phys. A: Math. Gen., 23, 1990, 841-846. (1990) MR1048764DOI10.1088/0305-4470/23/6/010
  23. Linton, C., Holderbaum, W., Biggs, J., 10.5402/2012/467520, ISRN Math. Phys., 2012. (2012) DOI10.5402/2012/467520
  24. Nijmeijer, H., Schaft, A. van der, Nonlinear Dynamical Control Systems, 1996, Springer. (1996) MR1047663
  25. Respondek, W., Tall, I.A., Feedback equivalence of nonlinear control systems: a survey on formal approach, Chaos in Automatic Control, 2006, 137-262, CRC Press. (2006) Zbl1203.93039MR2283271
  26. Sachkov, Y.L., 10.1007/s10958-008-9275-0, J. Math. Sci., 156, 2009, 381-439. (2009) Zbl1211.93038MR2373391DOI10.1007/s10958-008-9275-0
  27. Sokolov, V.V., Wolf, T., 10.1088/0305-4470/39/8/009, J. Phys. A: Math. Gen., 39, 2006, 1915-1926. (2006) MR2209308DOI10.1088/0305-4470/39/8/009
  28. Sussmann, H.J., Lie brackets, real analyticity and geometric control, Differential Geometric Control Theory, 1983, 1-116, Birkhäuser. (1983) Zbl0545.93002MR0708500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.