Control Systems on the Orthogonal Group SO(4)
Ross M. Adams; Rory Biggs; Claudiu C. Remsing
Communications in Mathematics (2013)
- Volume: 21, Issue: 2, page 107-128
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topAdams, Ross M., Biggs, Rory, and Remsing, Claudiu C.. "Control Systems on the Orthogonal Group SO(4)." Communications in Mathematics 21.2 (2013): 107-128. <http://eudml.org/doc/260803>.
@article{Adams2013,
abstract = {We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.},
author = {Adams, Ross M., Biggs, Rory, Remsing, Claudiu C.},
journal = {Communications in Mathematics},
keywords = {left-invariant control system; detached feedback equivalence; orthogonal group; left-invariant control system; detached feedback equivalence; orthogonal group},
language = {eng},
number = {2},
pages = {107-128},
publisher = {University of Ostrava},
title = {Control Systems on the Orthogonal Group SO(4)},
url = {http://eudml.org/doc/260803},
volume = {21},
year = {2013},
}
TY - JOUR
AU - Adams, Ross M.
AU - Biggs, Rory
AU - Remsing, Claudiu C.
TI - Control Systems on the Orthogonal Group SO(4)
JO - Communications in Mathematics
PY - 2013
PB - University of Ostrava
VL - 21
IS - 2
SP - 107
EP - 128
AB - We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
LA - eng
KW - left-invariant control system; detached feedback equivalence; orthogonal group; left-invariant control system; detached feedback equivalence; orthogonal group
UR - http://eudml.org/doc/260803
ER -
References
top- Adams, R.M., Biggs, R., Remsing, C.C., On the equivalence of control systems on the orthogonal group SO(4), Recent Researches in Automatic Control, Systems Science and Communications, 2012, 54-59, WSEAS Press. (2012) MR2881500
- Adams, R.M., Biggs, R., Remsing, C.C., Equivalence of control systems on the Euclidean group SE(2), Control Cybernet., 41, 2012, 513-524. (2012) MR3087026
- Agrachev, A.A., Sachkov, Y.L., Control Theory from the Geometric Viewpoint, 2004, Springer. (2004) Zbl1062.93001MR2062547
- Aron, A., Moş, I., Csaky, A., Puta, M., 10.1142/S0219887808002795, Int. J. Geom. Methods Mod. Phys., 5, 2008, 319-327. (2008) Zbl1159.49002MR2422030DOI10.1142/S0219887808002795
- Biggs, J.D., Holderbaum, W., 10.1109/TAC.2007.899010, IEEE Trans. Automat. Control, 52, 2007, 1027-1038. (2007) MR2329893DOI10.1109/TAC.2007.899010
- Biggs, R., Remsing, C.C., A category of control systems, An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368. (2012) Zbl1274.93062MR2928428
- Biggs, R., Remsing, C.C., A note on the affine subspaces of three-dimensional Lie algebras, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3, 2012, 45-52. (2012) MR3155842
- Biggs, R., Remsing, C.C., On the equivalence of cost-extended control systems on Lie groups, Recent Researches in Automatic Control, Systems Science and Communications, 2012, 60-65, WSEAS Press. (2012)
- Biggs, R., Remsing, C.C., Control affine systems on semisimple three-dimensional Lie groups, An. Ştiinţe. Univ. Al. I. Cuza Iaşi. Mat., 59, 2013, 399-414. (2013)
- Biggs, R., Remsing, C.C., Cost-extended control systems on Lie groups, Mediterr. J. Math., To appear in Mediterr. J. Math. DOI: 10.1007/s00009-013-0355-0.
- Biggs, R., Remsing, C.C., Equivalence of control systems on the pseudo-orthogonal group , preprint.
- Biggs, R., Remsing, C.C., On the equivalence of control systems on Lie groups, preprint.
- Birtea, P., Caşu, I., Raţiu, T.S., Turhan, M., 10.1007/s00332-011-9113-2, J. Nonlinear Sci., 22, 2012, 187-212. (2012) MR2912325DOI10.1007/s00332-011-9113-2
- Bogoyavlensky, O.I., 10.1007/BF01258538, Commun. Math. Phys., 93, 1984, 417-436. (1984) MR0745694DOI10.1007/BF01258538
- D'Alessandro, D., 10.1109/9.981724, IEEE Trans. Automat. Control, 47, 2002, 87-92. (2002) MR1879692DOI10.1109/9.981724
- Isidori, A., Nonlinear Control Systems (Third Edition), 1995, Springer. (1995)
- Jakubczyk, B., Equivalence and invariants of nonlinear control systems, Nonlinear Controllability and Optimal Control, 1990, 177-218, Marcel Dekker. (1990) Zbl0712.93027MR1061386
- Jovanović, B., 10.1088/0305-4470/31/5/011, J. Phys. A: Math. Gen., 31, 1998, 1415-1422. (1998) Zbl0945.70014MR1628570DOI10.1088/0305-4470/31/5/011
- Jurdjevic, V., Geometric Control Theory, 1997, Cambridge University Press. (1997) Zbl0940.93005MR1425878
- Jurdjevic, V., Sussmann, H.J., 10.1016/0022-0396(72)90035-6, J. Diff. Equations, 12, 1972, 313-329. (1972) Zbl0237.93027MR0331185DOI10.1016/0022-0396(72)90035-6
- Knapp, A. W., Lie Groups Beyond an Introduction (Second Edition), 2005, Birkhäuser. (2005) MR1920389
- Komarov, I.V., Kuznetsov, V.B., 10.1088/0305-4470/23/6/010, J. Phys. A: Math. Gen., 23, 1990, 841-846. (1990) MR1048764DOI10.1088/0305-4470/23/6/010
- Linton, C., Holderbaum, W., Biggs, J., 10.5402/2012/467520, ISRN Math. Phys., 2012. (2012) DOI10.5402/2012/467520
- Nijmeijer, H., Schaft, A. van der, Nonlinear Dynamical Control Systems, 1996, Springer. (1996) MR1047663
- Respondek, W., Tall, I.A., Feedback equivalence of nonlinear control systems: a survey on formal approach, Chaos in Automatic Control, 2006, 137-262, CRC Press. (2006) Zbl1203.93039MR2283271
- Sachkov, Y.L., 10.1007/s10958-008-9275-0, J. Math. Sci., 156, 2009, 381-439. (2009) Zbl1211.93038MR2373391DOI10.1007/s10958-008-9275-0
- Sokolov, V.V., Wolf, T., 10.1088/0305-4470/39/8/009, J. Phys. A: Math. Gen., 39, 2006, 1915-1926. (2006) MR2209308DOI10.1088/0305-4470/39/8/009
- Sussmann, H.J., Lie brackets, real analyticity and geometric control, Differential Geometric Control Theory, 1983, 1-116, Birkhäuser. (1983) Zbl0545.93002MR0708500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.