Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations
Markus Stammberger; Heinrich Voss
Applications of Mathematics (2014)
- Volume: 59, Issue: 1, page 1-13
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topStammberger, Markus, and Voss, Heinrich. "Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations." Applications of Mathematics 59.1 (2014): 1-13. <http://eudml.org/doc/260806>.
@article{Stammberger2014,
abstract = {Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.},
author = {Stammberger, Markus, Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {eigenvalue problem; fluid-solid vibration; variational characterization; minmax principle; maxmin principle; eigenvalue problem; fluid-solid vibration; variational characterization; min-max principle; max-min principle},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations},
url = {http://eudml.org/doc/260806},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Stammberger, Markus
AU - Voss, Heinrich
TI - Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 1
EP - 13
AB - Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
LA - eng
KW - eigenvalue problem; fluid-solid vibration; variational characterization; minmax principle; maxmin principle; eigenvalue problem; fluid-solid vibration; variational characterization; min-max principle; max-min principle
UR - http://eudml.org/doc/260806
ER -
References
top- Alonso, A., Russo, A. D., Padra, C., Rodríguez, R., 10.1023/A:1014243118190, Adv. Comput. Math. 15 (2001), 25-59. (2001) Zbl1043.74041MR1887728DOI10.1023/A:1014243118190
- Babuška, I., Osborn, J., Eigenvalue problems, Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) P. Ciarlet et al. North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
- Belytschko, T., 10.1016/0045-7949(80)90121-2, Comput. Struct. 12 (1980), 459-469. (1980) Zbl0457.73076DOI10.1016/0045-7949(80)90121-2
- Bennighof, J. K., Vibroacoustic frequency sweep analysis using automated multi-level substructuring, Proceedings of the AIAA 40 SDM Conference, St. Louis, Missouri, 1999 Department of Aerospace Engineering Engineering Mechanics, The University of Texas Austin (1999). (1999)
- Bermúdez, A., Gamallo, P., Noguieras, M. R., Rodríguez, R., 10.1093/imanum/dri032, IMA J. Numer. Anal. 26 (2006), 391-421. (2006) MR2218639DOI10.1093/imanum/dri032
- Bermúdez, A., Rodríguez, R., 10.1090/S0025-5718-01-01335-7, Math. Comput. 71 (2002), 537-552. (2002) Zbl0992.74066MR1885614DOI10.1090/S0025-5718-01-01335-7
- Craggs, A., 10.1016/0022-460X(71)90408-1, Journal of Sound and Vibration 15 (1971), 509-528. (1971) DOI10.1016/0022-460X(71)90408-1
- Deü, J.-F., Larbi, W., Ohayon, R., Variational formulation of interior structural-acoustic vibration problem, Computational Aspects of Structural Acoustics and Vibrations G. Sandberg et al. CISM International Centre for Mechanical Sciences 505 Springer, Wien (2009), 1-21. (2009)
- Everstine, G. C., 10.1016/0022-460X(81)90335-7, Journal of Sound and Vibration 79 (1981), 157-160. (1981) DOI10.1016/0022-460X(81)90335-7
- Morand, H., Ohayon, R., 10.1002/nme.1620140508, Int. J. Numer. Methods Eng. 14 (1979), 741-755. (1979) Zbl0402.73052DOI10.1002/nme.1620140508
- Olson, L. G., Bathe, K.-J., 10.1016/0045-7949(85)90226-3, Comput. Struct. 21 (1985), 21-32. (1985) Zbl0568.73088DOI10.1016/0045-7949(85)90226-3
- Petyt, M., Lea, J., Koopmann, G. H., 10.1016/0022-460X(76)90730-6, Journal of Sound and Vibration 45 (1976), 495-502. (1976) DOI10.1016/0022-460X(76)90730-6
- Rodríguez, R., Solomin, J. E., 10.1090/S0025-5718-96-00739-9, Math. Comput. 65 (1996), 1463-1475. (1996) Zbl0853.65111MR1344621DOI10.1090/S0025-5718-96-00739-9
- Sandberg, G., Göransson, P., 10.1016/S0022-460X(88)80166-4, Journal of Sound and Vibration 123 (1988), 507-515. (1988) DOI10.1016/S0022-460X(88)80166-4
- Stammberger, M., On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. PhD thesis, Institute of Numerical Simulation, Hamburg University of Technology Hamburg (2010). (2010)
- Stammberger, M., Voss, H., 10.1002/nla.734, Numer. Linear Algebra Appl. 18 (2011), 411-427. (2011) Zbl1249.65271MR2760061DOI10.1002/nla.734
- Stammberger, M., Voss, H., On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures, ETNA, Electron. Trans. Numer. Anal. (electronic only) 36 (2009-2010), 113-125. (2009) Zbl1237.74028MR2780001
- Voss, H., Stammberger, M., 10.1115/1.4007251, J. Pressure Vessel Technol. 135 (2013), paper 011303. (2013) DOI10.1115/1.4007251
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.