Complete q -order moment convergence of moving average processes under ϕ -mixing assumptions

Xing-Cai Zhou; Jin-Guan Lin

Applications of Mathematics (2014)

  • Volume: 59, Issue: 1, page 69-83
  • ISSN: 0862-7940

Abstract

top
Let { Y i , - < i < } be a doubly infinite sequence of identically distributed ϕ -mixing random variables, and { a i , - < i < } an absolutely summable sequence of real numbers. We prove the complete q -order moment convergence for the partial sums of moving average processes X n = i = - a i Y i + n , n 1 based on the sequence { Y i , - < i < } of ϕ -mixing random variables under some suitable conditions. These results generalize and complement earlier results.

How to cite

top

Zhou, Xing-Cai, and Lin, Jin-Guan. "Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions." Applications of Mathematics 59.1 (2014): 69-83. <http://eudml.org/doc/260809>.

@article{Zhou2014,
abstract = {Let $\lbrace Y_i, -\infty <i<\infty \rbrace $ be a doubly infinite sequence of identically distributed $\varphi $-mixing random variables, and $\lbrace a_i, -\infty <i<\infty \rbrace $ an absolutely summable sequence of real numbers. We prove the complete $q$-order moment convergence for the partial sums of moving average processes $\Big \lbrace X_n=\sum _\{i=-\infty \}^\infty a_i Y_\{i+n\},n\ge 1\Big \rbrace $ based on the sequence $\lbrace Y_i, -\infty <i<\infty \rbrace $ of $\varphi $-mixing random variables under some suitable conditions. These results generalize and complement earlier results.},
author = {Zhou, Xing-Cai, Lin, Jin-Guan},
journal = {Applications of Mathematics},
keywords = {moving average; $\varphi $-mixing; complete convergence; $q$-order moment; maximum of partial sums; -order complete convergence; moving average process; maximum of partial sums; -mixing},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions},
url = {http://eudml.org/doc/260809},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Zhou, Xing-Cai
AU - Lin, Jin-Guan
TI - Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 69
EP - 83
AB - Let $\lbrace Y_i, -\infty <i<\infty \rbrace $ be a doubly infinite sequence of identically distributed $\varphi $-mixing random variables, and $\lbrace a_i, -\infty <i<\infty \rbrace $ an absolutely summable sequence of real numbers. We prove the complete $q$-order moment convergence for the partial sums of moving average processes $\Big \lbrace X_n=\sum _{i=-\infty }^\infty a_i Y_{i+n},n\ge 1\Big \rbrace $ based on the sequence $\lbrace Y_i, -\infty <i<\infty \rbrace $ of $\varphi $-mixing random variables under some suitable conditions. These results generalize and complement earlier results.
LA - eng
KW - moving average; $\varphi $-mixing; complete convergence; $q$-order moment; maximum of partial sums; -order complete convergence; moving average process; maximum of partial sums; -mixing
UR - http://eudml.org/doc/260809
ER -

References

top
  1. Baek, J.-I., Kim, T.-S., Liang, H.-Y., 10.1111/1467-842X.00287, Aust. N. Z. J. Stat. 45 (2003), 331-342. (2003) Zbl1082.60028MR1999515DOI10.1111/1467-842X.00287
  2. Burton, R. M., Dehling, H., 10.1016/0167-7152(90)90031-2, Stat. Probab. Lett. 9 (1990), 397-401. (1990) Zbl0699.60016MR1060081DOI10.1016/0167-7152(90)90031-2
  3. Chen, P., Hu, T.-C., Volodin, A., 10.1090/S0094-9000-09-00755-8, Theory Probab. Math. Stat. 77 (2008), 165-176; Teor. Jmovirn. Mat. Stat. 77 149-160 (2007). (2007) Zbl1199.60074MR2432780DOI10.1090/S0094-9000-09-00755-8
  4. Chen, P., Hu, T.-C., Volodin, A., 10.1016/j.spl.2008.07.026, Stat. Probab. Lett. 79 (2009), 105-111. (2009) Zbl1154.60026MR2483402DOI10.1016/j.spl.2008.07.026
  5. Chen, P., Wang, D., 10.1007/s10114-007-6062-7, Acta Math. Sin., Engl. Ser. 24 (2008), 611-622. (2008) Zbl1159.60015MR2393155DOI10.1007/s10114-007-6062-7
  6. Chow, Y. S., On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. (1988) Zbl0655.60028MR1089491
  7. Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
  8. Ibragimov, I. A., 10.1137/1107036, Theor. Probab. Appl. 7 (1963), 349-382; Teor. Veroyatn. Primen 7 361-392 (1962), Russian. (1962) MR0148125DOI10.1137/1107036
  9. Kim, T.-S., Ko, M.-H., 10.1016/j.spl.2007.09.009, Stat. Probab. Lett. 78 (2008), 839-846. (2008) Zbl1140.60315MR2398357DOI10.1016/j.spl.2007.09.009
  10. Lai, T. L., 10.1214/aop/1176995713, Ann. Probab. 5 (1977), 693-706. (1977) Zbl0389.60020MR0471043DOI10.1214/aop/1176995713
  11. Li, D., Rao, M. Bhaskara, Wang, X., 10.1016/0167-7152(92)90073-E, Stat. Probab. Lett. 14 (1992), 111-114. (1992) MR1173407DOI10.1016/0167-7152(92)90073-E
  12. Li, D., Spătaru, A., 10.1007/s10959-005-7534-2, J. Theor. Probab. 18 (2005), 933-947. (2005) Zbl1085.60013MR2289939DOI10.1007/s10959-005-7534-2
  13. Li, Y.-X., Zhang, L.-X., 10.1016/j.spl.2004.10.003, Stat. Probab. Lett. 70 (2004), 191-197. (2004) Zbl1056.62100MR2108085DOI10.1016/j.spl.2004.10.003
  14. Peligrad, M., The r -quick version of the strong law for stationary ϕ -mixing sequences, Almost Everywhere Convergence, Proc. Int. Conf., Columbus/OH 1988 G. A. Edgar et al. Academic Press New York (1989), 335-348. (1989) MR1035254
  15. Shao, Q., A moment inequality and its applications, Acta Math. Sin. 31 (1988), 736-747 Chinese. (1988) Zbl0698.60025MR1000416
  16. Shao, Q., Complete convergence for ρ -mixing sequences, Acta Math. Sin. 32 (1989), 377-393 Chinese. (1989) Zbl0686.60025MR1212051
  17. Yu, D., Wang, Z., Complete convergence of moving average processes under negative dependence assumptions, Math. Appl. 15 (2002), 30-34. (2002) Zbl1010.62081MR1889135
  18. Zhang, L.-X., 10.1016/0167-7152(95)00215-4, Stat. Probab. Lett. 30 (1996), 165-170. (1996) Zbl0873.60019MR1417003DOI10.1016/0167-7152(95)00215-4
  19. Zhou, X., 10.1016/j.spl.2009.10.018, Stat. Probab. Lett. 80 (2010), 285-292. (2010) Zbl1186.60031MR2593564DOI10.1016/j.spl.2009.10.018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.