Complete -order moment convergence of moving average processes under -mixing assumptions
Applications of Mathematics (2014)
- Volume: 59, Issue: 1, page 69-83
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhou, Xing-Cai, and Lin, Jin-Guan. "Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions." Applications of Mathematics 59.1 (2014): 69-83. <http://eudml.org/doc/260809>.
@article{Zhou2014,
abstract = {Let $\lbrace Y_i, -\infty <i<\infty \rbrace $ be a doubly infinite sequence of identically distributed $\varphi $-mixing random variables, and $\lbrace a_i, -\infty <i<\infty \rbrace $ an absolutely summable sequence of real numbers. We prove the complete $q$-order moment convergence for the partial sums of moving average processes $\Big \lbrace X_n=\sum _\{i=-\infty \}^\infty a_i Y_\{i+n\},n\ge 1\Big \rbrace $ based on the sequence $\lbrace Y_i, -\infty <i<\infty \rbrace $ of $\varphi $-mixing random variables under some suitable conditions. These results generalize and complement earlier results.},
author = {Zhou, Xing-Cai, Lin, Jin-Guan},
journal = {Applications of Mathematics},
keywords = {moving average; $\varphi $-mixing; complete convergence; $q$-order moment; maximum of partial sums; -order complete convergence; moving average process; maximum of partial sums; -mixing},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions},
url = {http://eudml.org/doc/260809},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Zhou, Xing-Cai
AU - Lin, Jin-Guan
TI - Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 69
EP - 83
AB - Let $\lbrace Y_i, -\infty <i<\infty \rbrace $ be a doubly infinite sequence of identically distributed $\varphi $-mixing random variables, and $\lbrace a_i, -\infty <i<\infty \rbrace $ an absolutely summable sequence of real numbers. We prove the complete $q$-order moment convergence for the partial sums of moving average processes $\Big \lbrace X_n=\sum _{i=-\infty }^\infty a_i Y_{i+n},n\ge 1\Big \rbrace $ based on the sequence $\lbrace Y_i, -\infty <i<\infty \rbrace $ of $\varphi $-mixing random variables under some suitable conditions. These results generalize and complement earlier results.
LA - eng
KW - moving average; $\varphi $-mixing; complete convergence; $q$-order moment; maximum of partial sums; -order complete convergence; moving average process; maximum of partial sums; -mixing
UR - http://eudml.org/doc/260809
ER -
References
top- Baek, J.-I., Kim, T.-S., Liang, H.-Y., 10.1111/1467-842X.00287, Aust. N. Z. J. Stat. 45 (2003), 331-342. (2003) Zbl1082.60028MR1999515DOI10.1111/1467-842X.00287
- Burton, R. M., Dehling, H., 10.1016/0167-7152(90)90031-2, Stat. Probab. Lett. 9 (1990), 397-401. (1990) Zbl0699.60016MR1060081DOI10.1016/0167-7152(90)90031-2
- Chen, P., Hu, T.-C., Volodin, A., 10.1090/S0094-9000-09-00755-8, Theory Probab. Math. Stat. 77 (2008), 165-176; Teor. Jmovirn. Mat. Stat. 77 149-160 (2007). (2007) Zbl1199.60074MR2432780DOI10.1090/S0094-9000-09-00755-8
- Chen, P., Hu, T.-C., Volodin, A., 10.1016/j.spl.2008.07.026, Stat. Probab. Lett. 79 (2009), 105-111. (2009) Zbl1154.60026MR2483402DOI10.1016/j.spl.2008.07.026
- Chen, P., Wang, D., 10.1007/s10114-007-6062-7, Acta Math. Sin., Engl. Ser. 24 (2008), 611-622. (2008) Zbl1159.60015MR2393155DOI10.1007/s10114-007-6062-7
- Chow, Y. S., On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. (1988) Zbl0655.60028MR1089491
- Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
- Ibragimov, I. A., 10.1137/1107036, Theor. Probab. Appl. 7 (1963), 349-382; Teor. Veroyatn. Primen 7 361-392 (1962), Russian. (1962) MR0148125DOI10.1137/1107036
- Kim, T.-S., Ko, M.-H., 10.1016/j.spl.2007.09.009, Stat. Probab. Lett. 78 (2008), 839-846. (2008) Zbl1140.60315MR2398357DOI10.1016/j.spl.2007.09.009
- Lai, T. L., 10.1214/aop/1176995713, Ann. Probab. 5 (1977), 693-706. (1977) Zbl0389.60020MR0471043DOI10.1214/aop/1176995713
- Li, D., Rao, M. Bhaskara, Wang, X., 10.1016/0167-7152(92)90073-E, Stat. Probab. Lett. 14 (1992), 111-114. (1992) MR1173407DOI10.1016/0167-7152(92)90073-E
- Li, D., Spătaru, A., 10.1007/s10959-005-7534-2, J. Theor. Probab. 18 (2005), 933-947. (2005) Zbl1085.60013MR2289939DOI10.1007/s10959-005-7534-2
- Li, Y.-X., Zhang, L.-X., 10.1016/j.spl.2004.10.003, Stat. Probab. Lett. 70 (2004), 191-197. (2004) Zbl1056.62100MR2108085DOI10.1016/j.spl.2004.10.003
- Peligrad, M., The -quick version of the strong law for stationary -mixing sequences, Almost Everywhere Convergence, Proc. Int. Conf., Columbus/OH 1988 G. A. Edgar et al. Academic Press New York (1989), 335-348. (1989) MR1035254
- Shao, Q., A moment inequality and its applications, Acta Math. Sin. 31 (1988), 736-747 Chinese. (1988) Zbl0698.60025MR1000416
- Shao, Q., Complete convergence for -mixing sequences, Acta Math. Sin. 32 (1989), 377-393 Chinese. (1989) Zbl0686.60025MR1212051
- Yu, D., Wang, Z., Complete convergence of moving average processes under negative dependence assumptions, Math. Appl. 15 (2002), 30-34. (2002) Zbl1010.62081MR1889135
- Zhang, L.-X., 10.1016/0167-7152(95)00215-4, Stat. Probab. Lett. 30 (1996), 165-170. (1996) Zbl0873.60019MR1417003DOI10.1016/0167-7152(95)00215-4
- Zhou, X., 10.1016/j.spl.2009.10.018, Stat. Probab. Lett. 80 (2010), 285-292. (2010) Zbl1186.60031MR2593564DOI10.1016/j.spl.2009.10.018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.