Fuzzy empirical distribution function: Properties and application

Gholamreza Hesamian; S. M. Taheri

Kybernetika (2013)

  • Volume: 49, Issue: 6, page 962-982
  • ISSN: 0023-5954

Abstract

top
The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the α -level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.

How to cite

top

Hesamian, Gholamreza, and Taheri, S. M.. "Fuzzy empirical distribution function: Properties and application." Kybernetika 49.6 (2013): 962-982. <http://eudml.org/doc/260815>.

@article{Hesamian2013,
abstract = {The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha $-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.},
author = {Hesamian, Gholamreza, Taheri, S. M.},
journal = {Kybernetika},
keywords = {fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem; fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov-Smirnov test; fuzzy -value; convergence with probability one; degree of accept; degree of reject; Glivenko-Cantelli theorem},
language = {eng},
number = {6},
pages = {962-982},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fuzzy empirical distribution function: Properties and application},
url = {http://eudml.org/doc/260815},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Hesamian, Gholamreza
AU - Taheri, S. M.
TI - Fuzzy empirical distribution function: Properties and application
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 962
EP - 982
AB - The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha $-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.
LA - eng
KW - fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem; fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov-Smirnov test; fuzzy -value; convergence with probability one; degree of accept; degree of reject; Glivenko-Cantelli theorem
UR - http://eudml.org/doc/260815
ER -

References

top
  1. Arefi, M., Viertl, R., Taheri, S. M., 10.1007/s00184-010-0311-y, Metrika 75 (2012), 5-22. Zbl1241.62040MR2878105DOI10.1007/s00184-010-0311-y
  2. Bzowski, A., Urbanski, M. K., Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables., http://arxiv.org/abs/0903.0959 
  3. Denoeux, T., Masson, M. H., Herbert, P. H., Non-parametric rank-based statistics and significance tests for fuzzy data., Fuzzy Sets and Systems 153 (2005), 1-28. MR2202121
  4. Dubois, D., Prade, H., 10.1080/00207727808941724, Internat. J. System Sci. 9 (1978), 613-626. MR0491199DOI10.1080/00207727808941724
  5. Dubois, D., Prade, H., 10.1016/0020-0255(83)90025-7, Inform. Sci. 30 (1983), 183-224. MR0730910DOI10.1016/0020-0255(83)90025-7
  6. Filzmoser, P., Viertl, R., 10.1007/s001840300269, Metrika 59 (2004), 21-29. Zbl1052.62009MR2043430DOI10.1007/s001840300269
  7. Gibbons, J. D., Chakraborti, S., Non-parametric Statistical Inference. Fourth edition., Marcel Dekker, New York 2003. MR2064386
  8. Gil, M. A., Fuzzy random variables: Development and state of the art., In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15. 
  9. Govindarajulu, Z., Non-parametric Inference., Hackensack, World Scientific 2007. 
  10. Grzegorzewski, P., Statistical inference about the median from vague data., Control Cybernet. 27 (1998), 447-464. Zbl0945.62038MR1663896
  11. Grzegorzewski, P., Two-sample median test for vague data., In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626. 
  12. Grzegorzewski, P., 10.1002/int.20345, Internat. J. Intelligent Systems 24 (2009), 529-539. Zbl1160.62039DOI10.1002/int.20345
  13. Grzegorzewski, P., Distribution-free tests for vague data., In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. Zbl1064.62052MR2118134
  14. Grzegorzewski, P., A bi-robust test for vague data., In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144. 
  15. Hesamian, G., Taheri, S. M., Linear rank tests for two-sample fuzzy data: a p-value approach., J. Uncertainty Systems 7 (2013), 129-137. 
  16. Holena, M., 10.1016/S0165-0114(03)00208-2, Fuzzy Sets and Systems 145 (2004), 229-252. MR2073999DOI10.1016/S0165-0114(03)00208-2
  17. Hryniewicz, O., 10.1016/j.csda.2006.04.014, Comput. Statist. Data Anal. 51 (2006), 323-334. Zbl1157.62424MR2297603DOI10.1016/j.csda.2006.04.014
  18. Hryniewicz, O., Possibilistic decisions and fuzzy statistical tests., Fuzzy Sets and Systems 157 (2006), 2665-2673. Zbl1099.62008MR2328390
  19. Kahraman, C., Bozdag, C. F., Ruan, D., 10.1002/int.20037, Internat. J. Intelligent Systems 19 (2004), 1069-1078. DOI10.1002/int.20037
  20. Klement, E. P., Puri, M. L., Ralescu, D. A., Limit theorems for fuzzy random variables., Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. Zbl0605.60038MR0861082
  21. Krätschmer, V., 10.1007/s001840300303, Metrika 60 (2004), 167-189. Zbl1083.60004MR2088738DOI10.1007/s001840300303
  22. Kruse, R., Meyer, K. D., Statistics with Vague Data., Reidel Publishing Company, Dordrecht 1987. Zbl0663.62010MR0913303
  23. Lee, K. H., First Course on Fuzzy Theory and Applications., Springer, Heidelberg 2005. Zbl1063.94129
  24. Li, S., Ogura, Y., Strong laws of large numbers for independent fuzzy set-valued random variables., Fuzzy Sets and Systems 157 (2006), 2569-2578. Zbl1104.60307MR2328383
  25. Kvam, P. H., Vidadovic, B., Non-parametric Statistics with Application to Science and Engineering., J. Wiley, New Jersey 2007. 
  26. Mareš, M., Fuzzy data in statistics., Kybernetika 43 (2007), 491-502. Zbl1134.62001MR2377927
  27. Nguyen, H., Wang, T., Wu, B., 10.1002/int.10154, Internat. J. Intelligent Systems 19 (2004), 99-109. Zbl1101.68874DOI10.1002/int.10154
  28. Parchami, A., Taheri, S. M., Mashinchi, M., 10.1007/s00362-008-0133-4, Statist. Papers 51 (2010), 209-226. Zbl1247.62105MR2556596DOI10.1007/s00362-008-0133-4
  29. Parthasarathy, K. R., Probability Measurs on Metric Space., Academic Press, New York 1967. MR0226684
  30. Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(86)90093-4, J. Math. Anal. Appl. 361 (1986), 409-422. Zbl0605.60038MR0833596DOI10.1016/0022-247X(86)90093-4
  31. Shapiro, A. F., Fuzzy random variables., Insurance: Math. and Econom. 44 (2009), 307-314. Zbl1206.93062MR2517895
  32. Taheri, S. M., Hesamian, G., Goodman-Kruskal measure of association for fuzzy-categorized variables., Kybernetika 47 (2011), 110-122. Zbl1213.93199MR2807868
  33. Taheri, S. M., Hesamian, G., 10.1007/s00362-012-0443-4, Statist. Papers 54 (2013), 457-470. MR3043300DOI10.1007/s00362-012-0443-4
  34. Viertl, R., 10.1016/j.csda.2006.04.002, Comput. Statist. Data Anal. 51 (2006), 133-147. Zbl1157.62368MR2297592DOI10.1016/j.csda.2006.04.002
  35. Viertl, R., Statistical Methods for Fuzzy Data., J. Wiley, Chichester 2011. Zbl1101.62003MR2759969
  36. Wang, X., Kerre, E., Reasonable properties for the ordering of fuzzy quantities (II)., Fuzzy Sets and Systems 118 (2001), 387-405. Zbl0971.03055MR1809387
  37. Wu, H. C., Statistical hypotheses testing for fuzzy data., Fuzzy Sets and Systems 175 (2005), 30-56. Zbl1081.62012MR2161302
  38. Yoan, Y., 10.1016/0165-0114(91)90073-Y, Fuzzy Sets and Systems 43 (1991), 139-157. MR1127998DOI10.1016/0165-0114(91)90073-Y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.