Fuzzy empirical distribution function: Properties and application
Gholamreza Hesamian; S. M. Taheri
Kybernetika (2013)
- Volume: 49, Issue: 6, page 962-982
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHesamian, Gholamreza, and Taheri, S. M.. "Fuzzy empirical distribution function: Properties and application." Kybernetika 49.6 (2013): 962-982. <http://eudml.org/doc/260815>.
@article{Hesamian2013,
abstract = {The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha $-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.},
author = {Hesamian, Gholamreza, Taheri, S. M.},
journal = {Kybernetika},
keywords = {fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem; fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov-Smirnov test; fuzzy -value; convergence with probability one; degree of accept; degree of reject; Glivenko-Cantelli theorem},
language = {eng},
number = {6},
pages = {962-982},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fuzzy empirical distribution function: Properties and application},
url = {http://eudml.org/doc/260815},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Hesamian, Gholamreza
AU - Taheri, S. M.
TI - Fuzzy empirical distribution function: Properties and application
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 962
EP - 982
AB - The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha $-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.
LA - eng
KW - fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem; fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov-Smirnov test; fuzzy -value; convergence with probability one; degree of accept; degree of reject; Glivenko-Cantelli theorem
UR - http://eudml.org/doc/260815
ER -
References
top- Arefi, M., Viertl, R., Taheri, S. M., 10.1007/s00184-010-0311-y, Metrika 75 (2012), 5-22. Zbl1241.62040MR2878105DOI10.1007/s00184-010-0311-y
- Bzowski, A., Urbanski, M. K., Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables., http://arxiv.org/abs/0903.0959
- Denoeux, T., Masson, M. H., Herbert, P. H., Non-parametric rank-based statistics and significance tests for fuzzy data., Fuzzy Sets and Systems 153 (2005), 1-28. MR2202121
- Dubois, D., Prade, H., 10.1080/00207727808941724, Internat. J. System Sci. 9 (1978), 613-626. MR0491199DOI10.1080/00207727808941724
- Dubois, D., Prade, H., 10.1016/0020-0255(83)90025-7, Inform. Sci. 30 (1983), 183-224. MR0730910DOI10.1016/0020-0255(83)90025-7
- Filzmoser, P., Viertl, R., 10.1007/s001840300269, Metrika 59 (2004), 21-29. Zbl1052.62009MR2043430DOI10.1007/s001840300269
- Gibbons, J. D., Chakraborti, S., Non-parametric Statistical Inference. Fourth edition., Marcel Dekker, New York 2003. MR2064386
- Gil, M. A., Fuzzy random variables: Development and state of the art., In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.
- Govindarajulu, Z., Non-parametric Inference., Hackensack, World Scientific 2007.
- Grzegorzewski, P., Statistical inference about the median from vague data., Control Cybernet. 27 (1998), 447-464. Zbl0945.62038MR1663896
- Grzegorzewski, P., Two-sample median test for vague data., In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.
- Grzegorzewski, P., 10.1002/int.20345, Internat. J. Intelligent Systems 24 (2009), 529-539. Zbl1160.62039DOI10.1002/int.20345
- Grzegorzewski, P., Distribution-free tests for vague data., In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. Zbl1064.62052MR2118134
- Grzegorzewski, P., A bi-robust test for vague data., In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144.
- Hesamian, G., Taheri, S. M., Linear rank tests for two-sample fuzzy data: a p-value approach., J. Uncertainty Systems 7 (2013), 129-137.
- Holena, M., 10.1016/S0165-0114(03)00208-2, Fuzzy Sets and Systems 145 (2004), 229-252. MR2073999DOI10.1016/S0165-0114(03)00208-2
- Hryniewicz, O., 10.1016/j.csda.2006.04.014, Comput. Statist. Data Anal. 51 (2006), 323-334. Zbl1157.62424MR2297603DOI10.1016/j.csda.2006.04.014
- Hryniewicz, O., Possibilistic decisions and fuzzy statistical tests., Fuzzy Sets and Systems 157 (2006), 2665-2673. Zbl1099.62008MR2328390
- Kahraman, C., Bozdag, C. F., Ruan, D., 10.1002/int.20037, Internat. J. Intelligent Systems 19 (2004), 1069-1078. DOI10.1002/int.20037
- Klement, E. P., Puri, M. L., Ralescu, D. A., Limit theorems for fuzzy random variables., Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. Zbl0605.60038MR0861082
- Krätschmer, V., 10.1007/s001840300303, Metrika 60 (2004), 167-189. Zbl1083.60004MR2088738DOI10.1007/s001840300303
- Kruse, R., Meyer, K. D., Statistics with Vague Data., Reidel Publishing Company, Dordrecht 1987. Zbl0663.62010MR0913303
- Lee, K. H., First Course on Fuzzy Theory and Applications., Springer, Heidelberg 2005. Zbl1063.94129
- Li, S., Ogura, Y., Strong laws of large numbers for independent fuzzy set-valued random variables., Fuzzy Sets and Systems 157 (2006), 2569-2578. Zbl1104.60307MR2328383
- Kvam, P. H., Vidadovic, B., Non-parametric Statistics with Application to Science and Engineering., J. Wiley, New Jersey 2007.
- Mareš, M., Fuzzy data in statistics., Kybernetika 43 (2007), 491-502. Zbl1134.62001MR2377927
- Nguyen, H., Wang, T., Wu, B., 10.1002/int.10154, Internat. J. Intelligent Systems 19 (2004), 99-109. Zbl1101.68874DOI10.1002/int.10154
- Parchami, A., Taheri, S. M., Mashinchi, M., 10.1007/s00362-008-0133-4, Statist. Papers 51 (2010), 209-226. Zbl1247.62105MR2556596DOI10.1007/s00362-008-0133-4
- Parthasarathy, K. R., Probability Measurs on Metric Space., Academic Press, New York 1967. MR0226684
- Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(86)90093-4, J. Math. Anal. Appl. 361 (1986), 409-422. Zbl0605.60038MR0833596DOI10.1016/0022-247X(86)90093-4
- Shapiro, A. F., Fuzzy random variables., Insurance: Math. and Econom. 44 (2009), 307-314. Zbl1206.93062MR2517895
- Taheri, S. M., Hesamian, G., Goodman-Kruskal measure of association for fuzzy-categorized variables., Kybernetika 47 (2011), 110-122. Zbl1213.93199MR2807868
- Taheri, S. M., Hesamian, G., 10.1007/s00362-012-0443-4, Statist. Papers 54 (2013), 457-470. MR3043300DOI10.1007/s00362-012-0443-4
- Viertl, R., 10.1016/j.csda.2006.04.002, Comput. Statist. Data Anal. 51 (2006), 133-147. Zbl1157.62368MR2297592DOI10.1016/j.csda.2006.04.002
- Viertl, R., Statistical Methods for Fuzzy Data., J. Wiley, Chichester 2011. Zbl1101.62003MR2759969
- Wang, X., Kerre, E., Reasonable properties for the ordering of fuzzy quantities (II)., Fuzzy Sets and Systems 118 (2001), 387-405. Zbl0971.03055MR1809387
- Wu, H. C., Statistical hypotheses testing for fuzzy data., Fuzzy Sets and Systems 175 (2005), 30-56. Zbl1081.62012MR2161302
- Yoan, Y., 10.1016/0165-0114(91)90073-Y, Fuzzy Sets and Systems 43 (1991), 139-157. MR1127998DOI10.1016/0165-0114(91)90073-Y
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.