Estimates for the commutator of bilinear Fourier multiplier

Guoen Hu; Wentan Yi

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 4, page 1113-1134
  • ISSN: 0011-4642

Abstract

top
Let b 1 , b 2 BMO ( n ) and T σ be a bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ σ κ W s 1 , s 2 ( 2 n ) < for some s 1 , s 2 ( n / 2 , n ] . In this paper, the behavior on L p 1 ( n ) × L p 2 ( n ) ( p 1 , p 2 ( 1 , ) ) , on H 1 ( n ) × L p 2 ( n ) ( p 2 [ 2 , ) ) , and on H 1 ( n ) × H 1 ( n ) , is considered for the commutator T σ , b defined by T σ , b ( f 1 , f 2 ) ( x ) = b 1 ( x ) T σ ( f 1 , f 2 ) ( x ) - T σ ( b 1 f 1 , f 2 ) ( x ) + b 2 ( x ) T σ ( f 1 , f 2 ) ( x ) - T σ ( f 1 , b 2 f 2 ) ( x ) . By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.

How to cite

top

Hu, Guoen, and Yi, Wentan. "Estimates for the commutator of bilinear Fourier multiplier." Czechoslovak Mathematical Journal 63.4 (2013): 1113-1134. <http://eudml.org/doc/260818>.

@article{Hu2013,
abstract = {Let $b_1, b_2 \in \{\rm BMO\}(\mathbb \{R\}^n)$ and $T_\{\sigma \}$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _\{\kappa \in \mathbb \{Z\}\} \Vert \sigma _\{\kappa \}\Vert _\{W^\{s_1,s_2\}(\mathbb \{R\}^\{2n\})\}<\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^\{p_1\}(\mathbb \{R\}^n)\times L^\{p_2\}(\mathbb \{R\}^n)$$(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb \{R\}^n)\times L^\{p_2\}(\mathbb \{R\}^n)$$(p_2\in [2,\infty ))$, and on $H^1(\mathbb \{R\}^n)\times H^1(\mathbb \{R\}^n)$, is considered for the commutator $T_\{\{\sigma \}, \vec\{b\}\} $ defined by \[ \begin\{aligned\} T\_\{\sigma ,\vec\{b\}\} (f\_1,f\_2) (x)=&b\_1(x)T\_\{\sigma \}(f\_1, f\_2)(x)-T\_\{\sigma \}(b\_1f\_1, f\_2)(x) &+ b\_2(x)T\_\{\sigma \}(f\_1, f\_2)(x)-T\_\{\sigma \}(f\_1, b\_2f\_2)(x) . \end\{aligned\} \] By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.},
author = {Hu, Guoen, Yi, Wentan},
journal = {Czechoslovak Mathematical Journal},
keywords = {bilinear Fourier multiplier operator; commutator; Hardy space; bilinear Fourier multiplier operator; commutator; Hardy space},
language = {eng},
number = {4},
pages = {1113-1134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates for the commutator of bilinear Fourier multiplier},
url = {http://eudml.org/doc/260818},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Hu, Guoen
AU - Yi, Wentan
TI - Estimates for the commutator of bilinear Fourier multiplier
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1113
EP - 1134
AB - Let $b_1, b_2 \in {\rm BMO}(\mathbb {R}^n)$ and $T_{\sigma }$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb {Z}} \Vert \sigma _{\kappa }\Vert _{W^{s_1,s_2}(\mathbb {R}^{2n})}<\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^{p_1}(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$$(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$$(p_2\in [2,\infty ))$, and on $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$, is considered for the commutator $T_{{\sigma }, \vec{b}} $ defined by \[ \begin{aligned} T_{\sigma ,\vec{b}} (f_1,f_2) (x)=&b_1(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(b_1f_1, f_2)(x) &+ b_2(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(f_1, b_2f_2)(x) . \end{aligned} \] By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.
LA - eng
KW - bilinear Fourier multiplier operator; commutator; Hardy space; bilinear Fourier multiplier operator; commutator; Hardy space
UR - http://eudml.org/doc/260818
ER -

References

top
  1. Anh, B. T., Duong, X. T., 10.1016/j.bulsci.2012.04.001, Bull. Sci. Math. 137 (2013), 63-75. (2013) Zbl1266.42019MR3007100DOI10.1016/j.bulsci.2012.04.001
  2. Christ, M., Weak type (1,1) bounds for rough operators, Ann. Math. (2) 128 (1998), 19-42. (1998) MR0951506
  3. Coifman, R. R., Meyer, Y., 10.1090/S0002-9947-1975-0380244-8, Trans. Am. Math. Soc. 212 (1975), 315-331. (1975) Zbl0324.44005MR0380244DOI10.1090/S0002-9947-1975-0380244-8
  4. Coifman, R. R., Meyer, Y., Nonlinear harmonic analysis, operator theory and PDE, Beijing Lectures in Harmonic Analysis. (Summer School in Analysis, Beijing, The People's Republic of China, September 1984). Annals of Mathematics Studies 112 Princeton University Press Princeton (1986), 3-45. (1986) MR0864370
  5. Fujita, M., Tomita, N., 10.1090/S0002-9947-2012-05700-X, Trans. Am. Math. Soc. 364 (2012), 6335-6353. (2012) Zbl1275.42015MR2958938DOI10.1090/S0002-9947-2012-05700-X
  6. García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J. L., 10.1512/iumj.1991.40.40063, Indiana Univ. Math. J. 40 (1991), 1397-1420. (1991) Zbl0765.42012MR1142721DOI10.1512/iumj.1991.40.40063
  7. Grafakos, L., Miyachi, A., Tomita, N., 10.4153/CJM-2012-025-9, Can. J. Math. 65 (2013), 299-330. (2013) Zbl1275.42016MR3028565DOI10.4153/CJM-2012-025-9
  8. Grafakos, L., Si, Z., The Hörmander multiplier theorem for multilinear operators, J. Reine Angew. Math. 668 (2012), 133-147. (2012) Zbl1254.42017MR2948874
  9. Grafakos, L., Torres, R. H., 10.1006/aima.2001.2028, Adv. Math. 165 (2002), 124-164. (2002) Zbl1032.42020MR1880324DOI10.1006/aima.2001.2028
  10. Hu, G., Lin, C.-C., Weighted norm inequalities for multilinear singular integral operators and applications, arXiv: 1208.6346. 
  11. Kenig, C. E., Stein, E. M., 10.4310/MRL.1999.v6.n1.a1, Math. Res. Lett. 6 (1999), 1-15. (1999) Zbl0952.42005MR1682725DOI10.4310/MRL.1999.v6.n1.a1
  12. Kurtz, D. S., Wheeden, R. L., 10.1090/S0002-9947-1979-0542885-8, Trans. Am. Math. Soc. 255 (1979), 343-362. (1979) Zbl0427.42004MR0542885DOI10.1090/S0002-9947-1979-0542885-8
  13. Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
  14. Meda, S., Sjögren, P., Vallarino, M., 10.1090/S0002-9939-08-09365-9, Proc. Am. Math. Soc. 136 (2008), 2921-2931. (2008) Zbl1273.42021MR2399059DOI10.1090/S0002-9939-08-09365-9
  15. Miyachi, A., Tomita, N., 10.4171/RMI/728, Rev. Mat. Iberoam. 29 495-530 (2013). (2013) Zbl1275.42017MR3047426DOI10.4171/RMI/728
  16. Pérez, C., Torres, R. H., 10.1090/conm/320/05615, Harmonic Analysis at Mount Holyoke. Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, Mount Holyoke College, South Hadley, MA, USA, June 25--July 5, 2001 W. Beckner et al. American Mathematical Society Providence Contemp. Math. 320 (2003), 323-331. (2003) Zbl1045.42011MR1979948DOI10.1090/conm/320/05615
  17. Tomita, N., 10.1016/j.jfa.2010.06.010, J. Funct. Anal. 259 (2010), 2028-2044. (2010) Zbl1201.42005MR2671120DOI10.1016/j.jfa.2010.06.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.