Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth
Kamal Lochan Patra; Binod Kumar Sahoo
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 909-922
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPatra, Kamal Lochan, and Sahoo, Binod Kumar. "Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth." Czechoslovak Mathematical Journal 63.4 (2013): 909-922. <http://eudml.org/doc/260824>.
@article{Patra2013,
abstract = {In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on $n$ vertices with girth $g$ ($n$, $g$ being fixed), which graph minimizes the Laplacian spectral radius? Let $U_\{n,g\}$ be the lollipop graph obtained by appending a pendent vertex of a path on $n-g$$(n> g)$ vertices to a vertex of a cycle on $g\ge 3$ vertices. We prove that the graph $U_\{n,g\}$ uniquely minimizes the Laplacian spectral radius for $n\ge 2g-1$ when $g$ is even and for $n\ge 3g-1$ when $g$ is odd.},
author = {Patra, Kamal Lochan, Sahoo, Binod Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph; Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph},
language = {eng},
number = {4},
pages = {909-922},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth},
url = {http://eudml.org/doc/260824},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Patra, Kamal Lochan
AU - Sahoo, Binod Kumar
TI - Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 909
EP - 922
AB - In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on $n$ vertices with girth $g$ ($n$, $g$ being fixed), which graph minimizes the Laplacian spectral radius? Let $U_{n,g}$ be the lollipop graph obtained by appending a pendent vertex of a path on $n-g$$(n> g)$ vertices to a vertex of a cycle on $g\ge 3$ vertices. We prove that the graph $U_{n,g}$ uniquely minimizes the Laplacian spectral radius for $n\ge 2g-1$ when $g$ is even and for $n\ge 3g-1$ when $g$ is odd.
LA - eng
KW - Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph; Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph
UR - http://eudml.org/doc/260824
ER -
References
top- Fallat, S. M., Kirkland, S., Pati, S., 10.1016/S0012-365X(01)00355-7, Discrete Math. 254 (2002), 115-142. (2002) Zbl0995.05092MR1909864DOI10.1016/S0012-365X(01)00355-7
- Fallat, S. M., Kirkland, S., Pati, S., 10.1080/0308108031000069182, Linear Multilinear Algebra 51 (2003), 221-241. (2003) Zbl1043.05074MR1995656DOI10.1080/0308108031000069182
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
- Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
- Guo, J.-M., The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), 59-71. (2006) Zbl1082.05059MR2202092
- Guo, J.-M., 10.1016/j.camwa.2007.02.009, Comput. Math. Appl. 54 (2007), 709-720. (2007) Zbl1155.05330MR2347934DOI10.1016/j.camwa.2007.02.009
- Horn, R. A., Johnson, C. R., Matrix Analysis, Reprinted with corrections Cambridge University Press, Cambridge (1990). (1990) Zbl0704.15002MR1084815
- Lal, A. K., Patra, K. L., 10.1080/03081080600618738, Linear Multilinear Algebra 55 (2007), 457-461. (2007) Zbl1124.05064MR2363546DOI10.1080/03081080600618738
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Merris, R., 10.1080/03081089508818377, Linear Multilinear Algebra 39 (1995), 19-31. (1995) Zbl0832.05081MR1374468DOI10.1080/03081089508818377
- Mohar, B., The Laplacian spectrum of graphs, Alavi, Y. Graph Theory, Combinatorics and Applications, Kalamazoo, MI, 1988, Vol. 2 Wiley-Intersci. Publ. Wiley, New York 871-898 (1991). (1991) Zbl0840.05059MR1170831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.