The F-method and a branching problem for generalized Verma modules associated to
Archivum Mathematicum (2013)
- Volume: 049, Issue: 5, page 317-332
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMilev, Todor, and Somberg, Petr. "The F-method and a branching problem for generalized Verma modules associated to $({\mathrm {Lie~}G_2},{\operatorname{so}(7)})$." Archivum Mathematicum 049.5 (2013): 317-332. <http://eudml.org/doc/260830>.
@article{Milev2013,
abstract = {The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm \{Lie~\}G_2\stackrel\{i\}\{\hookrightarrow \}\{\operatorname\{so\}(7)\}$, and generalized conformal $\{\operatorname\{so\}(7)\}$-Verma modules of scalar type. As a result, we classify the $i(\{\mathrm \{Lie~\}G_2\}) \cap \{\mathfrak \{p\}\}$-singular vectors for this class of $\operatorname\{so\}(7)$-modules.},
author = {Milev, Todor, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra $\{\mathrm \{Lie~\}G_2\}$; F-method; branching problem; generalized Verma modules; conformal geometry in dimension 5; exceptional Lie algebra ; F-method; branching problem},
language = {eng},
number = {5},
pages = {317-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The F-method and a branching problem for generalized Verma modules associated to $(\{\mathrm \{Lie~\}G_2\},\{\operatorname\{so\}(7)\})$},
url = {http://eudml.org/doc/260830},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Milev, Todor
AU - Somberg, Petr
TI - The F-method and a branching problem for generalized Verma modules associated to $({\mathrm {Lie~}G_2},{\operatorname{so}(7)})$
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 317
EP - 332
AB - The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm {Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm {Lie~}G_2}) \cap {\mathfrak {p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules.
LA - eng
KW - generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm {Lie~}G_2}$; F-method; branching problem; generalized Verma modules; conformal geometry in dimension 5; exceptional Lie algebra ; F-method; branching problem
UR - http://eudml.org/doc/260830
ER -
References
top- Čap, A., Slovák, J., Parabolic geometries, I: Background and General Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2009. (2009) Zbl1183.53002MR2532439
- Dixmier, J., Algebres Enveloppantes, Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. (1974) Zbl0308.17007
- Eastwood, M. G., Graham, C. R., 10.1215/S0012-7094-91-06327-1, Duke Math. J. 63 (1991), 633–671. (1991) Zbl0745.53007DOI10.1215/S0012-7094-91-06327-1
- Graham, R. C., Willse, T., Parallel tractor extension and ambient metrics of holonomy split , http://xxx.lanl.gov/abs/1109.3504. Zbl1268.53075
- Humphreys, J. E., Jr.,, Representations of Semisimple Lie Algebras in the BGG Category , Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. (2008) MR2428237
- Juhl, A., Families of conformally covariant differential operators, Q–curvature and holography, Progress in Math., Birkhäuser, 2009. (2009) Zbl1177.53001MR2521913
- Kobayashi, T., 10.1007/BF01232239, Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. (1994) DOI10.1007/BF01232239
- Kobayashi, T., Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. (2007) MR2369496
- Kobayashi, T., 10.1007/s00031-012-9180-y, Transform. Groups 17 (2012), 523–546. (2012) Zbl1257.22014MR2921076DOI10.1007/s00031-012-9180-y
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, I, preprint.
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, II, preprint.
- Kostant, B., Verma modules and the existence of quasi–invariant differential operators, Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. (1974)
- Lepowsky, J., 10.1016/0021-8693(77)90254-X, J. Algebra 49 (1977), 496–511. (1977) Zbl0381.17006DOI10.1016/0021-8693(77)90254-X
- Matumoto, H., 10.1215/S0012-7094-05-13113-1, Duke Math. J. 131 (2006), 75–118. (2006) Zbl1129.17008MR2219237DOI10.1215/S0012-7094-05-13113-1
- Milev, T., Somberg, P., The branching problem for generalized Verma modules, with application to the pair , http://xxx.lanl.gov/abs/1209.3970.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.