The F-method and a branching problem for generalized Verma modules associated to ( Lie G 2 , so ( 7 ) )

Todor Milev; Petr Somberg

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 5, page 317-332
  • ISSN: 0044-8753

Abstract

top
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras Lie G 2 i so ( 7 ) , and generalized conformal so ( 7 ) -Verma modules of scalar type. As a result, we classify the i ( Lie G 2 ) 𝔭 -singular vectors for this class of so ( 7 ) -modules.

How to cite

top

Milev, Todor, and Somberg, Petr. "The F-method and a branching problem for generalized Verma modules associated to $({\mathrm {Lie~}G_2},{\operatorname{so}(7)})$." Archivum Mathematicum 049.5 (2013): 317-332. <http://eudml.org/doc/260830>.

@article{Milev2013,
abstract = {The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm \{Lie~\}G_2\stackrel\{i\}\{\hookrightarrow \}\{\operatorname\{so\}(7)\}$, and generalized conformal $\{\operatorname\{so\}(7)\}$-Verma modules of scalar type. As a result, we classify the $i(\{\mathrm \{Lie~\}G_2\}) \cap \{\mathfrak \{p\}\}$-singular vectors for this class of $\operatorname\{so\}(7)$-modules.},
author = {Milev, Todor, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra $\{\mathrm \{Lie~\}G_2\}$; F-method; branching problem; generalized Verma modules; conformal geometry in dimension 5; exceptional Lie algebra ; F-method; branching problem},
language = {eng},
number = {5},
pages = {317-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The F-method and a branching problem for generalized Verma modules associated to $(\{\mathrm \{Lie~\}G_2\},\{\operatorname\{so\}(7)\})$},
url = {http://eudml.org/doc/260830},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Milev, Todor
AU - Somberg, Petr
TI - The F-method and a branching problem for generalized Verma modules associated to $({\mathrm {Lie~}G_2},{\operatorname{so}(7)})$
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 317
EP - 332
AB - The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm {Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm {Lie~}G_2}) \cap {\mathfrak {p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules.
LA - eng
KW - generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm {Lie~}G_2}$; F-method; branching problem; generalized Verma modules; conformal geometry in dimension 5; exceptional Lie algebra ; F-method; branching problem
UR - http://eudml.org/doc/260830
ER -

References

top
  1. Čap, A., Slovák, J., Parabolic geometries, I: Background and General Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2009. (2009) Zbl1183.53002MR2532439
  2. Dixmier, J., Algebres Enveloppantes, Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. (1974) Zbl0308.17007
  3. Eastwood, M. G., Graham, C. R., 10.1215/S0012-7094-91-06327-1, Duke Math. J. 63 (1991), 633–671. (1991) Zbl0745.53007DOI10.1215/S0012-7094-91-06327-1
  4. Graham, R. C., Willse, T., Parallel tractor extension and ambient metrics of holonomy split G 2 , http://xxx.lanl.gov/abs/1109.3504. Zbl1268.53075
  5. Humphreys, J. E., Jr.,, Representations of Semisimple Lie Algebras in the BGG Category 𝒪 , Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. (2008) MR2428237
  6. Juhl, A., Families of conformally covariant differential operators, Q–curvature and holography, Progress in Math., Birkhäuser, 2009. (2009) Zbl1177.53001MR2521913
  7. Kobayashi, T., 10.1007/BF01232239, Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. (1994) DOI10.1007/BF01232239
  8. Kobayashi, T., Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. (2007) MR2369496
  9. Kobayashi, T., 10.1007/s00031-012-9180-y, Transform. Groups 17 (2012), 523–546. (2012) Zbl1257.22014MR2921076DOI10.1007/s00031-012-9180-y
  10. Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, I, preprint. 
  11. Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, II, preprint. 
  12. Kostant, B., Verma modules and the existence of quasi–invariant differential operators, Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. (1974) 
  13. Lepowsky, J., 10.1016/0021-8693(77)90254-X, J. Algebra 49 (1977), 496–511. (1977) Zbl0381.17006DOI10.1016/0021-8693(77)90254-X
  14. Matumoto, H., 10.1215/S0012-7094-05-13113-1, Duke Math. J. 131 (2006), 75–118. (2006) Zbl1129.17008MR2219237DOI10.1215/S0012-7094-05-13113-1
  15. Milev, T., Somberg, P., The branching problem for generalized Verma modules, with application to the pair ( so ( 7 ) , Lie G 2 ) , http://xxx.lanl.gov/abs/1209.3970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.