The F-method and a branching problem for generalized Verma modules associated to
Archivum Mathematicum (2013)
- Volume: 049, Issue: 5, page 317-332
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Čap, A., Slovák, J., Parabolic geometries, I: Background and General Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2009. (2009) Zbl1183.53002MR2532439
- Dixmier, J., Algebres Enveloppantes, Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. (1974) Zbl0308.17007
- Eastwood, M. G., Graham, C. R., 10.1215/S0012-7094-91-06327-1, Duke Math. J. 63 (1991), 633–671. (1991) Zbl0745.53007DOI10.1215/S0012-7094-91-06327-1
- Graham, R. C., Willse, T., Parallel tractor extension and ambient metrics of holonomy split , http://xxx.lanl.gov/abs/1109.3504. Zbl1268.53075
- Humphreys, J. E., Jr.,, Representations of Semisimple Lie Algebras in the BGG Category , Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. (2008) MR2428237
- Juhl, A., Families of conformally covariant differential operators, Q–curvature and holography, Progress in Math., Birkhäuser, 2009. (2009) Zbl1177.53001MR2521913
- Kobayashi, T., 10.1007/BF01232239, Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. (1994) DOI10.1007/BF01232239
- Kobayashi, T., Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. (2007) MR2369496
- Kobayashi, T., 10.1007/s00031-012-9180-y, Transform. Groups 17 (2012), 523–546. (2012) Zbl1257.22014MR2921076DOI10.1007/s00031-012-9180-y
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, I, preprint.
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry, II, preprint.
- Kostant, B., Verma modules and the existence of quasi–invariant differential operators, Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. (1974)
- Lepowsky, J., 10.1016/0021-8693(77)90254-X, J. Algebra 49 (1977), 496–511. (1977) Zbl0381.17006DOI10.1016/0021-8693(77)90254-X
- Matumoto, H., 10.1215/S0012-7094-05-13113-1, Duke Math. J. 131 (2006), 75–118. (2006) Zbl1129.17008MR2219237DOI10.1215/S0012-7094-05-13113-1
- Milev, T., Somberg, P., The branching problem for generalized Verma modules, with application to the pair , http://xxx.lanl.gov/abs/1209.3970.