On the Kolář connection
Archivum Mathematicum (2013)
- Volume: 049, Issue: 4, page 223-240
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMikulski, Włodzimierz M.. "On the Kolář connection." Archivum Mathematicum 049.4 (2013): 223-240. <http://eudml.org/doc/260831>.
@article{Mikulski2013,
abstract = {Let $Y\rightarrow M$ be a fibred manifold with $m$-dimensional base and $n$-dimensional fibres and $E\rightarrow M$ be a vector bundle with the same base $M$ and with $n$-dimensional fibres (the same $n$). If $m\ge 2$ and $n\ge 3$, we classify all canonical constructions of a classical linear connection $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ on $Y$ from a system $(\Gamma ,\Lambda ,\Phi ,\Delta )$ consisting of a general connection $\Gamma $ on $Y\rightarrow M$, a torsion free classical linear connection $\Lambda $ on $M$, a vertical parallelism $\Phi \colon Y\times _ME\rightarrow VY$ on $Y$ and a linear connection $\Delta $ on $E\rightarrow M$. An example of such $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ is the connection $(\Gamma ,\Lambda ,\Phi ,\Delta )$ by I. Kolář.},
author = {Mikulski, Włodzimierz M.},
journal = {Archivum Mathematicum},
keywords = {general connection; linear connection; classical linear connection; vertical parallelism; natural operators; general connection; linear connection; classical linear connection; vertical parallelism; natural operators},
language = {eng},
number = {4},
pages = {223-240},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Kolář connection},
url = {http://eudml.org/doc/260831},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - On the Kolář connection
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 4
SP - 223
EP - 240
AB - Let $Y\rightarrow M$ be a fibred manifold with $m$-dimensional base and $n$-dimensional fibres and $E\rightarrow M$ be a vector bundle with the same base $M$ and with $n$-dimensional fibres (the same $n$). If $m\ge 2$ and $n\ge 3$, we classify all canonical constructions of a classical linear connection $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ on $Y$ from a system $(\Gamma ,\Lambda ,\Phi ,\Delta )$ consisting of a general connection $\Gamma $ on $Y\rightarrow M$, a torsion free classical linear connection $\Lambda $ on $M$, a vertical parallelism $\Phi \colon Y\times _ME\rightarrow VY$ on $Y$ and a linear connection $\Delta $ on $E\rightarrow M$. An example of such $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ is the connection $(\Gamma ,\Lambda ,\Phi ,\Delta )$ by I. Kolář.
LA - eng
KW - general connection; linear connection; classical linear connection; vertical parallelism; natural operators; general connection; linear connection; classical linear connection; vertical parallelism; natural operators
UR - http://eudml.org/doc/260831
ER -
References
top- Doupovec, M., Mikulski, W. M., 10.1007/s10114-010-7333-2, Acta Math. Sinica 26 (1) (2010), 169–184. (2010) Zbl1186.53036MR2584996DOI10.1007/s10114-010-7333-2
- Gancarzewicz, J., Horizontal lifts of linear connections to the natural vector bundles, Differential geometry (Santiago de Compostela, 1984), vol. 131, Pitman, Boston, MA, 1985, pp. 318–341. (1985)
- Janyška, J., Vondra, J., 10.1016/S0034-4877(10)00002-9, Rep. Math. Phys. 64 (3) (2009), 395–415. (2009) Zbl1195.53040MR2602937DOI10.1016/S0034-4877(10)00002-9
- Kolář, I., 10.1142/S021988781000452X, Int. J. Geom. Methods Mod. Phys. (2010), 705–711. (2010) MR2669064DOI10.1142/S021988781000452X
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.