New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization
Behrouz Kheirfam; Nezam Mahdavi-Amiri
Kybernetika (2013)
- Volume: 49, Issue: 6, page 883-896
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKheirfam, Behrouz, and Mahdavi-Amiri, Nezam. "New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization." Kybernetika 49.6 (2013): 883-896. <http://eudml.org/doc/260832>.
@article{Kheirfam2013,
abstract = {A full Nesterov-Todd step infeasible interior-point algorithm is proposed for solving linear programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a new approach, we also provide a search direction and show that the iteration bound coincides with the best known bound for infeasible interior-point methods.},
author = {Kheirfam, Behrouz, Mahdavi-Amiri, Nezam},
journal = {Kybernetika},
keywords = {interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity; interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity},
language = {eng},
number = {6},
pages = {883-896},
publisher = {Institute of Information Theory and Automation AS CR},
title = {New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization},
url = {http://eudml.org/doc/260832},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Kheirfam, Behrouz
AU - Mahdavi-Amiri, Nezam
TI - New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 883
EP - 896
AB - A full Nesterov-Todd step infeasible interior-point algorithm is proposed for solving linear programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a new approach, we also provide a search direction and show that the iteration bound coincides with the best known bound for infeasible interior-point methods.
LA - eng
KW - interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity; interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity
UR - http://eudml.org/doc/260832
ER -
References
top- Faraut, J., Korányi, A., Analysis on Symmetric Cones., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York 1994. Zbl0841.43002MR1446489
- Faybusovich, L., 10.1016/S0377-0427(97)00153-2, J. Comput. Appl. Math. 86 (1997), 149-175. Zbl0889.65066MR1491432DOI10.1016/S0377-0427(97)00153-2
- Faybusovich, L., 10.1007/s002090100286, Math. Z. 239 (2002), 1, 117-129. Zbl0996.65065MR1879331DOI10.1007/s002090100286
- Gu, G., Zangiabadi, M., Roos, C., 10.1016/j.ejor.2011.02.022, European J. Oper. Res. 214 (2011), 3, 473-484. Zbl1245.90144MR2820168DOI10.1016/j.ejor.2011.02.022
- Güler, O., 10.1287/moor.21.4.860, Math. Oper. Res. 21 (1996), 4, 860-885. Zbl0867.90090MR1419906DOI10.1287/moor.21.4.860
- Muramatsu, M., 10.1023/A:1017920200889, J. Optim. Theory Appl. 112 (2002), 3, 595-625. Zbl0994.90095MR1892239DOI10.1023/A:1017920200889
- Nesterov, Y. E., Nemirovski, A., Interior-point Polynomial Algorithms in Convex Programming., SIAM, Philadelphia 1994. MR1258086
- Nesterov, Y. E., Todd, M. J., 10.1287/moor.22.1.1, Math. Oper. Res. 22 (1997), 1, 1-42. Zbl0871.90064MR1436572DOI10.1287/moor.22.1.1
- Rangarajan, B. K., 10.1137/040606557, SIAM J. Optim. 16 (2006), 4, 1211-1229. Zbl1131.90043MR2219140DOI10.1137/040606557
- Roos, C., 10.1137/050623917, SIAM J. Optim. 16 (2006), 4, 1110-1136. Zbl1131.90029MR2219135DOI10.1137/050623917
- Roos, C., Terlaky, T., Vial, J.-Ph., Theory and Algorithms for Linear Optimization: An Interior-Point Approach., John Wiley and Sons, Chichester 1997, Second edition Springer 2006. Zbl0954.65041MR1450094
- Schmieta, S. H., Alizadeh, F., 10.1007/s10107-003-0380-z, Math. Program. 96 (2003), 3, 409-438. MR1993457DOI10.1007/s10107-003-0380-z
- Sturm, J. F., 10.1016/S0024-3795(00)00096-3, Algebra Appl. 312 (2000), 1 - 3, 135-154. Zbl0973.90093MR1759328DOI10.1016/S0024-3795(00)00096-3
- Vieira, M. V. C., Jordan Algebraic Approach to Symmetric Optimization., Ph.D. Thesis, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology 2007.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.