Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari

Gabriella Margaria

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-A, Issue: 3, page 379-382
  • ISSN: 0392-4041

How to cite

top

Margaria, Gabriella. "Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari." Bollettino dell'Unione Matematica Italiana 3-A.3 (2000): 379-382. <http://eudml.org/doc/260871>.

@article{Margaria2000,
abstract = {},
author = {Margaria, Gabriella},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {379-382},
publisher = {Unione Matematica Italiana},
title = {Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari},
url = {http://eudml.org/doc/260871},
volume = {3-A},
year = {2000},
}

TY - JOUR
AU - Margaria, Gabriella
TI - Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/12//
PB - Unione Matematica Italiana
VL - 3-A
IS - 3
SP - 379
EP - 382
AB -
LA - ita
UR - http://eudml.org/doc/260871
ER -

References

top
  1. BOULIER, F., LAZARD, D., OLLIVIER, F. e PETITOT, M., Computing representation for radicals of finitely generated differential ideal, Technical Report, Laboratoire d’Informatique Fondamentale de Lille (1999). Zbl1185.12003
  2. CHAPPEL, M.J., GODFREY, K.R. e VAJDA, S., Global identifiability of parameters of non linear systems with specified inputs: A comparison of methods, Mathematical Biosciences, 102(1990), 41-73. Zbl0789.93039
  3. CHAPPEL, M.J., MARGARIA, G., RICCOMAGNO, E. e WYNN, H.P., Differential algebra methods for the study of the structural identifiability of biological rational polynomial models, Submitted to Mathematical Biosciences Zbl1006.92003
  4. FLIESS, M. e GLAD, S.T., An algebraic approach to linear and non linear control, In Trentelman H.L. e WILLEMS J.C., EDITORS, Essays on Control: Perspectives in the Theory and its applications, 14(1993). Zbl0838.93021
  5. MARGARIA, G., Application of Differential Algebra to the Identifiability of Nonlinear Models, Proceedings IFAC Symposium on Modelling and Control in Biomedical Systems, 30 marzo-1 aprile 2000. 
  6. OLLIVIER, F., Generalised standard bases with applications to control, ECC91 European Control Conference, 1(1991), 170-176. 
  7. POHJANPALO, H., System identifiability based on the power series expansion of the solution, Mathematical Biosciences, 41(1978), 21-33. Zbl0393.92008MR507373DOI10.1016/0025-5564(78)90063-9
  8. RITT, J.F., Differential algebra, American Mathematical Society (1950) Zbl0037.18402MR35763
  9. WALTER, E., Identifiability of State Space Models, Springer-Verlag(1982) MR672773
  10. WANG, D., An implementation of the characteristic set method in Maple, In Wang D. e PFALZGRAF J., EDITORS, Automated practical reasoning: algebraic approaches (1995), 187-201. Zbl0837.68110MR1340206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.