Temi geometrici e di teoria della dimostrazione nelle logiche proposizionali di Łukasiewicz

Stefano Aguzzoli

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-A, Issue: 1S, page 9-12
  • ISSN: 0392-4041

How to cite

top

Aguzzoli, Stefano. "Temi geometrici e di teoria della dimostrazione nelle logiche proposizionali di Łukasiewicz." Bollettino dell'Unione Matematica Italiana 3-A.1S (2000): 9-12. <http://eudml.org/doc/260922>.

@article{Aguzzoli2000,
abstract = {},
author = {Aguzzoli, Stefano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1S},
pages = {9-12},
publisher = {Unione Matematica Italiana},
title = {Temi geometrici e di teoria della dimostrazione nelle logiche proposizionali di Łukasiewicz},
url = {http://eudml.org/doc/260922},
volume = {3-A},
year = {2000},
}

TY - JOUR
AU - Aguzzoli, Stefano
TI - Temi geometrici e di teoria della dimostrazione nelle logiche proposizionali di Łukasiewicz
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/4//
PB - Unione Matematica Italiana
VL - 3-A
IS - 1S
SP - 9
EP - 12
AB -
LA - ita
UR - http://eudml.org/doc/260922
ER -

References

top
  1. AGUZZOLI, S., The Complexity of McNaughton Functions of One Variable, Advances in Applied Mathematics, 21(1998), 58-77. Zbl0911.03004MR1623329DOI10.1006/aama.1998.0581
  2. AGUZZOLI, S., A note on the representation of McNaughton lines by basic literals, Soft Computing, 2(1998), 111-115. 
  3. AGUZZOLI, S., CIABATTONI, A. e DINOLA, A., Sequent Calculi for Finite-Valued Łukasiewicz Logics via Boolean Decomposition, Journal of Logic and Computation, to appear. Zbl0955.03031
  4. AGUZZOLI, S., CIABATTONI, A., Finiteness in Infinite-Valued Łukasiewicz Logic, Journal of Logic, Language and Information, to appear. Zbl0951.03024
  5. AGUZZOLI, S., MUNDICI, D., An Algorithmic Desingularization of Three-Dimensional Toric Varieties, Tôhoku Mathematical Journal, 46(1994), 557-572. Zbl0817.14036MR1301289DOI10.2748/tmj/1178225680
  6. HÁJE, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht (1999). Zbl0937.03030
  7. MCNAUGHTON, R., A Theorem about Infinite-valued Sentential Logic, Journal of Symbolic Logic, 16(1951), 1-13. Zbl0043.00901MR41799
  8. MUNDICI, D., Satisfiability in many-valued sentential logic is NP-Complete, Theoretical Computer Science, 52(1987), 145-153. Zbl0639.03042MR918116DOI10.1016/0304-3975(87)90083-1
  9. MUNDICI, D., OLIVETTI, N., Resolution and model building in the infinite-valued calculus of Łukasiewicz, Theoretical Computer Science, 200(1998), 335-366. Zbl0921.03013MR1625499DOI10.1016/S0304-3975(98)00012-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.