Risolubilità e ipoellitticità per equazioni differenziali a derivate parziali semilineari con caratteristiche multiple
Bollettino dell'Unione Matematica Italiana (2001)
- Volume: 4-A, Issue: 3, page 519-522
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- GRAMCHEV, T. e RODINO, L., Gevrey solvability for semilinear partial differential equations with multiple characteristics, Boll. Un. Mat. Ital. B (8), 2 (1999), 65-120. ¨ Zbl0924.35030MR1794545
- HÖRMANDER, L., The analysis of linear partial differential operators I, II, III, IV, Springer-Verlag, Berlin (1983-85). Zbl0601.35001MR717035DOI10.1007/978-3-642-96750-4
- MARCOLONGO, P. e OLIARO, A., Local solvability for semilinear anisotropic partial differential equations, Ann. Mat. Pura e Appl. (IV), CLXXIX (2001), 229-262. Zbl1220.35005MR1848755DOI10.1007/BF02505957
- OLIARO, A., Some Examples of Locally solvable Anisotropic Partial Differential Operators, Proceedings Workshop «Partial Differential Operators», Torino, 8-10 May, 2000, L. Rodino editor, 125-136. Zbl0985.35120MR1818943
- RODINO, L., Linear partial differential operators in Gevrey spaces, World Scientific, Singapore (1993). Zbl0869.35005MR1249275DOI10.1142/9789814360036