Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
Archivum Mathematicum (2014)
- Volume: 050, Issue: 1, page 51-63
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations." Archivum Mathematicum 050.1 (2014): 51-63. <http://eudml.org/doc/261061>.
@article{Cavalheiro2014,
abstract = {In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations
\begin\{align*\}\{\Delta \}(v(x)\, \{\vert \{\Delta \}u\vert \}^\{p-2\}\{\Delta \}u) &-\sum \_\{j=1\}^n D\_j\{\bigl [\}\{\omega \}(x) \{\mathcal \{A\}\}\_j(x, u, \{\nabla \}u)\{\bigr ]\}\\ =&\ f\_0(x) - \sum \_\{j=1\}^nD\_jf\_j(x)\,, \quad \mbox \{in\}\quad \{\Omega \}\end\{align*\}
in the setting of the weighted Sobolev spaces.},
author = {Cavalheiro, Albo Carlos},
journal = {Archivum Mathematicum},
keywords = {degenerate nolinear elliptic equations; weighted Sobolev spaces; degenerate nolinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {51-63},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/261061},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 1
SP - 51
EP - 63
AB - In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations
\begin{align*}{\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) &-\sum _{j=1}^n D_j{\bigl [}{\omega }(x) {\mathcal {A}}_j(x, u, {\nabla }u){\bigr ]}\\ =&\ f_0(x) - \sum _{j=1}^nD_jf_j(x)\,, \quad \mbox {in}\quad {\Omega }\end{align*}
in the setting of the weighted Sobolev spaces.
LA - eng
KW - degenerate nolinear elliptic equations; weighted Sobolev spaces; degenerate nolinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/261061
ER -
References
top- Cavalheiro, A.C., 10.7494/OpMath.2013.33.3.439, Opuscula Math. 33 (2013), no. 3, 439–453. (2013) MR3046406DOI10.7494/OpMath.2013.33.3.439
- Cavalheiro, A.C., 10.1515/jaa-2013-0003, J. Appl. Anal. 19 (2013), 41–54. (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
- Chipot, M., Elliptic Equations: An Introductory Course, Birkhäuser, Berlin, 2009. (2009) Zbl1171.35003MR2494977
- Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. (1997) Zbl0894.35002MR1460729
- Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations (1982), 77–116. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
- Fučik, S., John, O., Kufner, A., Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. (1977) MR0482102
- Garcia-Cuerva, J., de Francia, J.L. Rubio, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116 (1985). (1985) MR0807149
- Gilbarg, D., Trudinger, N.S., Elliptic Partial Equations of Second Order, second ed., Springer, New York, 1983. (1983) MR0737190
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993. (1993) Zbl0780.31001MR1207810
- Kufner, A., Weighted Sobolev Spaces, John Wiley and Sons, 1985. (1985) Zbl0579.35021MR0802206
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Talbi, M., Tsouli, N., 10.1007/s00009-007-0104-3, Mediterranean J. Math. 4 (2007), 73–86. (2007) Zbl1150.35072MR2310704DOI10.1007/s00009-007-0104-3
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, São Diego, 1986. (1986) Zbl0621.42001MR0869816
- Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000. (2000) Zbl0949.31006MR1774162
- Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. II/B, Springer-Verlag, 1990. (1990) Zbl0684.47029MR1033498
- Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, 1990. (1990) Zbl0684.47029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.