Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 1, page 51-63
  • ISSN: 0044-8753

Abstract

top
In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations Δ ( v ( x ) | Δ u | p - 2 Δ u ) - j = 1 n D j [ ω ( x ) 𝒜 j ( x , u , u ) ] = f 0 ( x ) - j = 1 n D j f j ( x ) , i n Ω in the setting of the weighted Sobolev spaces.

How to cite

top

Cavalheiro, Albo Carlos. "Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations." Archivum Mathematicum 050.1 (2014): 51-63. <http://eudml.org/doc/261061>.

@article{Cavalheiro2014,
abstract = {In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations \begin\{align*\}\{\Delta \}(v(x)\, \{\vert \{\Delta \}u\vert \}^\{p-2\}\{\Delta \}u) &-\sum \_\{j=1\}^n D\_j\{\bigl [\}\{\omega \}(x) \{\mathcal \{A\}\}\_j(x, u, \{\nabla \}u)\{\bigr ]\}\\ =&\ f\_0(x) - \sum \_\{j=1\}^nD\_jf\_j(x)\,, \quad \mbox \{in\}\quad \{\Omega \}\end\{align*\} in the setting of the weighted Sobolev spaces.},
author = {Cavalheiro, Albo Carlos},
journal = {Archivum Mathematicum},
keywords = {degenerate nolinear elliptic equations; weighted Sobolev spaces; degenerate nolinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {51-63},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/261061},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 1
SP - 51
EP - 63
AB - In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations \begin{align*}{\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) &-\sum _{j=1}^n D_j{\bigl [}{\omega }(x) {\mathcal {A}}_j(x, u, {\nabla }u){\bigr ]}\\ =&\ f_0(x) - \sum _{j=1}^nD_jf_j(x)\,, \quad \mbox {in}\quad {\Omega }\end{align*} in the setting of the weighted Sobolev spaces.
LA - eng
KW - degenerate nolinear elliptic equations; weighted Sobolev spaces; degenerate nolinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/261061
ER -

References

top
  1. Cavalheiro, A.C., 10.7494/OpMath.2013.33.3.439, Opuscula Math. 33 (2013), no. 3, 439–453. (2013) MR3046406DOI10.7494/OpMath.2013.33.3.439
  2. Cavalheiro, A.C., 10.1515/jaa-2013-0003, J. Appl. Anal. 19 (2013), 41–54. (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
  3. Chipot, M., Elliptic Equations: An Introductory Course, Birkhäuser, Berlin, 2009. (2009) Zbl1171.35003MR2494977
  4. Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. (1997) Zbl0894.35002MR1460729
  5. Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations (1982), 77–116. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
  6. Fučik, S., John, O., Kufner, A., Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. (1977) MR0482102
  7. Garcia-Cuerva, J., de Francia, J.L. Rubio, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116 (1985). (1985) MR0807149
  8. Gilbarg, D., Trudinger, N.S., Elliptic Partial Equations of Second Order, second ed., Springer, New York, 1983. (1983) MR0737190
  9. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993. (1993) Zbl0780.31001MR1207810
  10. Kufner, A., Weighted Sobolev Spaces, John Wiley and Sons, 1985. (1985) Zbl0579.35021MR0802206
  11. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  12. Talbi, M., Tsouli, N., 10.1007/s00009-007-0104-3, Mediterranean J. Math. 4 (2007), 73–86. (2007) Zbl1150.35072MR2310704DOI10.1007/s00009-007-0104-3
  13. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, São Diego, 1986. (1986) Zbl0621.42001MR0869816
  14. Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000. (2000) Zbl0949.31006MR1774162
  15. Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. II/B, Springer-Verlag, 1990. (1990) Zbl0684.47029MR1033498
  16. Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, 1990. (1990) Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.