Characterization of -vertex graphs with metric dimension
Mohsen Jannesari; Behnaz Omoomi
Mathematica Bohemica (2014)
- Volume: 139, Issue: 1, page 1-23
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJannesari, Mohsen, and Omoomi, Behnaz. "Characterization of $n$-vertex graphs with metric dimension $n-3$." Mathematica Bohemica 139.1 (2014): 1-23. <http://eudml.org/doc/261079>.
@article{Jannesari2014,
abstract = {For an ordered set $W=\lbrace w_1,w_2,\ldots ,w_k\rbrace $ of vertices and a vertex $v$ in a connected graph $G$, the ordered $k$-vector $r(v|W):=(d(v,w_1),d(v,w_2),\ldots ,d(v,w_k))$ is called the metric representation of $v$ with respect to $W$, where $d(x,y)$ is the distance between vertices $x$ and $y$. A set $W$ is called a resolving set for $G$ if distinct vertices of $G$ have distinct representations with respect to $W$. The minimum cardinality of a resolving set for $G$ is its metric dimension. In this paper, we characterize all graphs of order $n$ with metric dimension $n-3$.},
author = {Jannesari, Mohsen, Omoomi, Behnaz},
journal = {Mathematica Bohemica},
keywords = {resolving set; basis; metric dimension; resolving set; basis; metric dimension},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterization of $n$-vertex graphs with metric dimension $n-3$},
url = {http://eudml.org/doc/261079},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Jannesari, Mohsen
AU - Omoomi, Behnaz
TI - Characterization of $n$-vertex graphs with metric dimension $n-3$
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 1
EP - 23
AB - For an ordered set $W=\lbrace w_1,w_2,\ldots ,w_k\rbrace $ of vertices and a vertex $v$ in a connected graph $G$, the ordered $k$-vector $r(v|W):=(d(v,w_1),d(v,w_2),\ldots ,d(v,w_k))$ is called the metric representation of $v$ with respect to $W$, where $d(x,y)$ is the distance between vertices $x$ and $y$. A set $W$ is called a resolving set for $G$ if distinct vertices of $G$ have distinct representations with respect to $W$. The minimum cardinality of a resolving set for $G$ is its metric dimension. In this paper, we characterize all graphs of order $n$ with metric dimension $n-3$.
LA - eng
KW - resolving set; basis; metric dimension; resolving set; basis; metric dimension
UR - http://eudml.org/doc/261079
ER -
References
top- Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R., 10.1137/050641867, SIAM J. Discrete Math. (electronic) 21 (2007), 423-441. (2007) Zbl1139.05314MR2318676DOI10.1137/050641867
- Chartrand, G., Eroh, L., Johnson, M. A., Ollermann, O. R., 10.1016/S0166-218X(00)00198-0, Discrete Appl. Math. 105 (2000), 99-113. (2000) MR1780464DOI10.1016/S0166-218X(00)00198-0
- Chartrand, G., Poisson, C., Zhang, P., 10.1016/S0898-1221(00)00126-7, Comput. Math. Appl. 39 (2000), 19-28. (2000) Zbl0953.05021MR1763834DOI10.1016/S0898-1221(00)00126-7
- Chartrand, G., Zhang, P., The theory and applications of resolvability in graphs (A survey), Congr. Numerantium 160 (2003), 47-68. (2003) Zbl1039.05029MR2049102
- Harary, F., Melter, R. A., On the metric dimension of a graph, Ars Comb. 2 (1976), 191-195. (1976) Zbl0349.05118MR0457289
- Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Cáceres, J., Puertas, M. L., 10.1016/j.endm.2005.06.023, Raspaud, André et al. 7th International Colloquium on Graph Theory, Hyeres, France, September 12-16, 2005 Elsevier, Amsterdam, Electronic Notes in Discrete Mathematics 22 (2005), 129-133. (2005) Zbl1182.05050MR2521989DOI10.1016/j.endm.2005.06.023
- Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R., Extremal graph theory for metric dimension and diameter, Electron. J. Comb. 17 (2010), Research paper R30, 28 pages. (2010) Zbl1219.05051MR2595490
- Khuller, S., Raghavachari, B., Rosenfeld, A., 10.1016/0166-218X(95)00106-2, Discrete Appl. Math. 70 (1996), 217-229. (1996) Zbl0865.68090MR1410574DOI10.1016/0166-218X(95)00106-2
- Sebö, A., Tannier, E., 10.1287/moor.1030.0070, Math. Oper. Res. 29 (2004), 383-393. (2004) Zbl1082.05032MR2065985DOI10.1287/moor.1030.0070
- Slater, P. J., Leaves of trees, Proc. 6th Southeast. Conf. Comb., Graph Theor., Comput Florida, Boca Raton (1975), 549-559. (1975) Zbl0316.05102MR0422062
- Sudhakara, G., Kumar, A. R. Hemanth, Graphs with metric dimension two---a characterization, Adv. Appl. Discrete Math. 4 (2009), 169-186. (2009) MR2590304
- Yero, I. G., Kuziak, D., Rodríguez-Velázquez, J. A., 10.1016/j.camwa.2011.03.046, Comput. Math. Appl. 61 (2011), 2793-2798. (2011) Zbl1221.05252MR2795402DOI10.1016/j.camwa.2011.03.046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.