Global behavior of a third order rational difference equation
Mathematica Bohemica (2014)
- Volume: 139, Issue: 1, page 25-37
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAbo-Zeid, Raafat. "Global behavior of a third order rational difference equation." Mathematica Bohemica 139.1 (2014): 25-37. <http://eudml.org/doc/261090>.
@article{Abo2014,
abstract = {In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation \[x\_\{n+1\}=\frac\{ax\_\{n\}x\_\{n-1\}\}\{-bx\_\{n\}+ cx\_\{n-2\}\},\quad n\in \mathbb \{N\}\_0 \]
where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_\{-2\}$, $x_\{-1\}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with $\{(a-c)\}/\{b\}<1$. When $a>c$ with $\{(a-c)\}/\{b\}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero.},
author = {Abo-Zeid, Raafat},
journal = {Mathematica Bohemica},
keywords = {difference equation; forbidden set; periodic solution; unbounded solution; existence of solution; convergence to zero; unbounded solution; periodicity; forbidden set; rational difference equation; asymptotic periodicity},
language = {eng},
number = {1},
pages = {25-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global behavior of a third order rational difference equation},
url = {http://eudml.org/doc/261090},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Abo-Zeid, Raafat
TI - Global behavior of a third order rational difference equation
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 25
EP - 37
AB - In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation \[x_{n+1}=\frac{ax_{n}x_{n-1}}{-bx_{n}+ cx_{n-2}},\quad n\in \mathbb {N}_0 \]
where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with ${(a-c)}/{b}<1$. When $a>c$ with ${(a-c)}/{b}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero.
LA - eng
KW - difference equation; forbidden set; periodic solution; unbounded solution; existence of solution; convergence to zero; unbounded solution; periodicity; forbidden set; rational difference equation; asymptotic periodicity
UR - http://eudml.org/doc/261090
ER -
References
top- Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods, and Applications, Pure and Applied Mathematics 155 Marcel Dekker, New York (1992). (1992) Zbl0925.39001MR1155840
- Aloqeili, M., 10.1016/j.amc.2005.10.024, Appl. Math. Comput. 176 (2006), 768-774. (2006) Zbl1100.39002MR2232069DOI10.1016/j.amc.2005.10.024
- Andruch-Sobiło, A., Migda, M., Further properties of the rational recursive sequence , Opusc. Math. 26 (2006), 387-394. (2006) Zbl1131.39003MR2280266
- Andruch-Sobiło, A., Migda, M., On the rational recursive sequence , Tatra Mt. Math. Publ. 43 (2009), 1-9. (2009) MR2588871
- Berg, L., Stević, S., 10.1016/j.amc.2011.02.005, Appl. Math. Comput. 217 (2011), 7191-7196. (2011) Zbl1260.39002MR2781112DOI10.1016/j.amc.2011.02.005
- Berg, L., Stević, S., 10.1016/j.amc.2011.06.050, Appl. Math. Comput. 218 (2011), 1713-1718. (2011) Zbl1243.39009MR2831394DOI10.1016/j.amc.2011.06.050
- Camouzis, E., Ladas, G., Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Advances in Discrete Mathematics and Applications 5 Chapman and Hall/HRC, Boca Raton (2008). (2008) Zbl1129.39002MR2363297
- Grove, E. A., Ladas, G., Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications 4 Chapman and Hall/CRC, Boca Raton (2005). (2005) Zbl1078.39009MR2193366
- Iričanin, B., Stević, S., On some rational difference equations, Ars Comb. 92 (2009), 67-72. (2009) Zbl1224.39014MR2532566
- Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differential Equations Dynam. Systems 1 (1993), 289-294. (1993) Zbl0868.39002MR1259169
- Kocić, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and Its Applications 256 Kluwer Academic Publishers, Dordrecht (1993). (1993) MR1247956
- Kruse, N., Nesemann, T., 10.1006/jmaa.1999.6384, J. Math. Anal. Appl. 235 (1999), 151-158. (1999) Zbl0933.37016MR1758674DOI10.1006/jmaa.1999.6384
- Kulenović, M. R. S., Ladas, G., Dynamics of Second Order Rational Difference Equations, With Open Problems and Conjectures Chapman and Hall/HRC, Boca Raton (2002). (2002) Zbl0981.39011MR1935074
- Levy, H., Lessman, F., Finite Difference Equations, Reprint of the 1961 edition. Dover Publications New York (1992). (1992) MR1217083
- Sedaghat, H., 10.1080/10236190802054126, J. Difference Equ. Appl. 15 (2009), 215-224. (2009) Zbl1169.39006MR2498770DOI10.1080/10236190802054126
- Stević, S., 10.1016/j.amc.2011.08.079, Appl. Math. Comput. 218 (2011), 3372-3378. (2011) Zbl1256.39008MR2851439DOI10.1016/j.amc.2011.08.079
- Stević, S., 10.1016/j.amc.2011.10.005, Appl. Math. Comput. 218 (2011), 4317-4324. (2011) Zbl1256.39008MR2862101DOI10.1016/j.amc.2011.10.005
- Stević, S., 10.1016/j.amc.2012.01.034, Appl. Math. Comput. 218 (2012), 7649-7654. (2012) Zbl1242.39011MR2892731DOI10.1016/j.amc.2012.01.034
- Stević, S., On the difference equation , Appl. Math. Comput. 218 (2011), 4507-4513. (2011) MR2862122
- Stević, S., 10.1016/j.amc.2011.10.068, Appl. Math. Comput. 218 (2012), 5010-5018. (2012) Zbl1253.39011MR2870025DOI10.1016/j.amc.2011.10.068
- Stević, S., 10.1016/j.aml.2005.05.014, Appl. Math. Lett. 19 (2006), 427-431. (2006) Zbl1095.39010MR2213143DOI10.1016/j.aml.2005.05.014
- Stević, S., More on a rational recurrence relation, Appl. Math. E-Notes (electronic only) 4 (2004), 80-85. (2004) Zbl1069.39024MR2077785
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.