Global behavior of a third order rational difference equation

Raafat Abo-Zeid

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 1, page 25-37
  • ISSN: 0862-7959

Abstract

top
In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation x n + 1 = a x n x n - 1 - b x n + c x n - 2 , n 0 where a , b , c are positive real numbers and the initial conditions x - 2 , x - 1 , x 0 are real numbers. We show that every admissible solution of that equation converges to zero if either a < c or a > c with ( a - c ) / b < 1 . When a > c with ( a - c ) / b > 1 , we prove that every admissible solution is unbounded. Finally, when a = c , we prove that every admissible solution converges to zero.

How to cite

top

Abo-Zeid, Raafat. "Global behavior of a third order rational difference equation." Mathematica Bohemica 139.1 (2014): 25-37. <http://eudml.org/doc/261090>.

@article{Abo2014,
abstract = {In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation \[x\_\{n+1\}=\frac\{ax\_\{n\}x\_\{n-1\}\}\{-bx\_\{n\}+ cx\_\{n-2\}\},\quad n\in \mathbb \{N\}\_0 \] where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_\{-2\}$, $x_\{-1\}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with $\{(a-c)\}/\{b\}<1$. When $a>c$ with $\{(a-c)\}/\{b\}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero.},
author = {Abo-Zeid, Raafat},
journal = {Mathematica Bohemica},
keywords = {difference equation; forbidden set; periodic solution; unbounded solution; existence of solution; convergence to zero; unbounded solution; periodicity; forbidden set; rational difference equation; asymptotic periodicity},
language = {eng},
number = {1},
pages = {25-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global behavior of a third order rational difference equation},
url = {http://eudml.org/doc/261090},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Abo-Zeid, Raafat
TI - Global behavior of a third order rational difference equation
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 25
EP - 37
AB - In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation \[x_{n+1}=\frac{ax_{n}x_{n-1}}{-bx_{n}+ cx_{n-2}},\quad n\in \mathbb {N}_0 \] where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with ${(a-c)}/{b}<1$. When $a>c$ with ${(a-c)}/{b}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero.
LA - eng
KW - difference equation; forbidden set; periodic solution; unbounded solution; existence of solution; convergence to zero; unbounded solution; periodicity; forbidden set; rational difference equation; asymptotic periodicity
UR - http://eudml.org/doc/261090
ER -

References

top
  1. Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods, and Applications, Pure and Applied Mathematics 155 Marcel Dekker, New York (1992). (1992) Zbl0925.39001MR1155840
  2. Aloqeili, M., 10.1016/j.amc.2005.10.024, Appl. Math. Comput. 176 (2006), 768-774. (2006) Zbl1100.39002MR2232069DOI10.1016/j.amc.2005.10.024
  3. Andruch-Sobiło, A., Migda, M., Further properties of the rational recursive sequence x n + 1 = a x n - 1 b + c x n x n - 1 , Opusc. Math. 26 (2006), 387-394. (2006) Zbl1131.39003MR2280266
  4. Andruch-Sobiło, A., Migda, M., On the rational recursive sequence x n + 1 = a x n - 1 b + c x n x n - 1 , Tatra Mt. Math. Publ. 43 (2009), 1-9. (2009) MR2588871
  5. Berg, L., Stević, S., 10.1016/j.amc.2011.02.005, Appl. Math. Comput. 217 (2011), 7191-7196. (2011) Zbl1260.39002MR2781112DOI10.1016/j.amc.2011.02.005
  6. Berg, L., Stević, S., 10.1016/j.amc.2011.06.050, Appl. Math. Comput. 218 (2011), 1713-1718. (2011) Zbl1243.39009MR2831394DOI10.1016/j.amc.2011.06.050
  7. Camouzis, E., Ladas, G., Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Advances in Discrete Mathematics and Applications 5 Chapman and Hall/HRC, Boca Raton (2008). (2008) Zbl1129.39002MR2363297
  8. Grove, E. A., Ladas, G., Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications 4 Chapman and Hall/CRC, Boca Raton (2005). (2005) Zbl1078.39009MR2193366
  9. Iričanin, B., Stević, S., On some rational difference equations, Ars Comb. 92 (2009), 67-72. (2009) Zbl1224.39014MR2532566
  10. Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differential Equations Dynam. Systems 1 (1993), 289-294. (1993) Zbl0868.39002MR1259169
  11. Kocić, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and Its Applications 256 Kluwer Academic Publishers, Dordrecht (1993). (1993) MR1247956
  12. Kruse, N., Nesemann, T., 10.1006/jmaa.1999.6384, J. Math. Anal. Appl. 235 (1999), 151-158. (1999) Zbl0933.37016MR1758674DOI10.1006/jmaa.1999.6384
  13. Kulenović, M. R. S., Ladas, G., Dynamics of Second Order Rational Difference Equations, With Open Problems and Conjectures Chapman and Hall/HRC, Boca Raton (2002). (2002) Zbl0981.39011MR1935074
  14. Levy, H., Lessman, F., Finite Difference Equations, Reprint of the 1961 edition. Dover Publications New York (1992). (1992) MR1217083
  15. Sedaghat, H., 10.1080/10236190802054126, J. Difference Equ. Appl. 15 (2009), 215-224. (2009) Zbl1169.39006MR2498770DOI10.1080/10236190802054126
  16. Stević, S., 10.1016/j.amc.2011.08.079, Appl. Math. Comput. 218 (2011), 3372-3378. (2011) Zbl1256.39008MR2851439DOI10.1016/j.amc.2011.08.079
  17. Stević, S., 10.1016/j.amc.2011.10.005, Appl. Math. Comput. 218 (2011), 4317-4324. (2011) Zbl1256.39008MR2862101DOI10.1016/j.amc.2011.10.005
  18. Stević, S., 10.1016/j.amc.2012.01.034, Appl. Math. Comput. 218 (2012), 7649-7654. (2012) Zbl1242.39011MR2892731DOI10.1016/j.amc.2012.01.034
  19. Stević, S., On the difference equation x n = x n - 2 / ( b n + c n x n - 1 x n - 2 ) , Appl. Math. Comput. 218 (2011), 4507-4513. (2011) MR2862122
  20. Stević, S., 10.1016/j.amc.2011.10.068, Appl. Math. Comput. 218 (2012), 5010-5018. (2012) Zbl1253.39011MR2870025DOI10.1016/j.amc.2011.10.068
  21. Stević, S., 10.1016/j.aml.2005.05.014, Appl. Math. Lett. 19 (2006), 427-431. (2006) Zbl1095.39010MR2213143DOI10.1016/j.aml.2005.05.014
  22. Stević, S., More on a rational recurrence relation, Appl. Math. E-Notes (electronic only) 4 (2004), 80-85. (2004) Zbl1069.39024MR2077785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.