Double sequence spaces over n -normed spaces

Kuldip Raj; Sunil K. Sharma

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 2, page 65-76
  • ISSN: 0044-8753

Abstract

top
In this paper, we define some classes of double sequences over n -normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.

How to cite

top

Raj, Kuldip, and Sharma, Sunil K.. "Double sequence spaces over $n$-normed spaces." Archivum Mathematicum 050.2 (2014): 65-76. <http://eudml.org/doc/261162>.

@article{Raj2014,
abstract = {In this paper, we define some classes of double sequences over $n$-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.},
author = {Raj, Kuldip, Sharma, Sunil K.},
journal = {Archivum Mathematicum},
keywords = {paranorm space; Orlicz function; solid; monotone; double sequences; $n$-normed space; paranormed space; Orlicz function; solid; monotone; double sequences; -normed space},
language = {eng},
number = {2},
pages = {65-76},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Double sequence spaces over $n$-normed spaces},
url = {http://eudml.org/doc/261162},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Raj, Kuldip
AU - Sharma, Sunil K.
TI - Double sequence spaces over $n$-normed spaces
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 2
SP - 65
EP - 76
AB - In this paper, we define some classes of double sequences over $n$-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.
LA - eng
KW - paranorm space; Orlicz function; solid; monotone; double sequences; $n$-normed space; paranormed space; Orlicz function; solid; monotone; double sequences; -normed space
UR - http://eudml.org/doc/261162
ER -

References

top
  1. Başarir, M., Sonalcan, O., On some double sequence spaces, J. Indian Acad. Math. 21 (1999), 193–220. (1999) Zbl0978.40002MR1754919
  2. Bromwich, T.J., An Introduction to the Theory of Infinite Series, Macmillan and Co. Ltd., New York, 1965. (1965) 
  3. Dutta, H., An application of lacunary summability method to n -norm, Int. J. Appl. Math. Stat. 15 (09) (2009), 89–97. (2009) MR2578559
  4. Dutta, H., Characterization of certain matrix classes involving generalized difference summability spaces, Appl. Sci. 11 (2009), 60–67. (2009) Zbl1195.40002MR2534057
  5. Dutta, H., 10.1142/S1793557110000441, Asian-Eur. J. Math. 3 (4) (2010), 565–575. (2010) Zbl1213.46006MR2747386DOI10.1142/S1793557110000441
  6. Dutta, H., 10.1016/j.aml.2010.04.045, Appl. Math. Lett. 23 (9) (2010), 1109–1113. (2010) Zbl1207.46008MR2659147DOI10.1016/j.aml.2010.04.045
  7. Dutta, H., 10.1016/j.jfranklin.2011.09.010, J. Franklin Inst. B 348 (2011), 2876–2883. (2011) Zbl1263.46023MR2847578DOI10.1016/j.jfranklin.2011.09.010
  8. Dutta, H., 10.1186/1029-242X-2013-232, J. Inequal. Appl. 2013:232 (2013), 13pp. (2013) Zbl1292.46002MR3066041DOI10.1186/1029-242X-2013-232
  9. Dutta, H., Başar, F., A generalization of Orlicz sequence spaces by Cesàro mean of order one, Acta Math. Univ. Comenian. (N.S.) 80 (2) (2011), 185–200. (2011) Zbl1265.46004MR2835274
  10. Dutta, H., Bilgin, T., 10.1016/j.aml.2011.01.022, Appl. Math. Lett. 24 (7) (2011), 1057–1062. (2011) MR2784157DOI10.1016/j.aml.2011.01.022
  11. Dutta, H., Reddy, B.S., On non-standard n -norm on some sequence spaces, Int. J. Pure Appl. Math. 68 (1) (2011), 1–11. (2011) Zbl1232.46005MR2798332
  12. Dutta, H., Reddy, B.S., Cheng, S.S., Strongly summable sequences defined over real n -normed spaces, Appl. Math. E-Notes 10 (2010), 199–209. (2010) Zbl1226.46018MR2732898
  13. Et, M., Çolak, R., On generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995), 377–386. (1995) 
  14. Gähler, S., 10.1002/mana.19640280102, Math. Nachr. 28 (1965), 1–43. (1965) DOI10.1002/mana.19640280102
  15. Gunawan, H., On n -inner product, n -norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap. 5 (2001), 47–54. (2001) MR1885776
  16. Gunawan, H., 10.1017/S0004972700019754, Bull. Austral. Math. Soc. 64 (2001), 137–147. (2001) MR1848086DOI10.1017/S0004972700019754
  17. Gunawan, H., Mashadi, M., 10.1155/S0161171201010675, Int. J. Math. Math. Sci. 27 (2001), 631–639. (2001) Zbl1006.46006MR1873126DOI10.1155/S0161171201010675
  18. Hardy, G.H., On the convergence of certain multiple series, Proc. Camb. Phil., Soc. 19 (1917), 86–95. (1917) 
  19. Karakaya, V., Dutta, H., 10.2298/FIL1103015K, Filomat 25 (3) (2011), 15–27. (2011) Zbl1265.46009MR2934370DOI10.2298/FIL1103015K
  20. Kızmaz, H., 10.4153/CMB-1981-027-5, Canad. Math. Bull. 24 (2) (1981), 169–176. (1981) MR0619442DOI10.4153/CMB-1981-027-5
  21. Lindenstrauss, J., Tzafriri, L., 10.1007/BF02771656, Israel J. Math. 10 (1971), 379–390. (1971) Zbl0227.46042MR0313780DOI10.1007/BF02771656
  22. Misiak, A., 10.1002/mana.19891400121, Math. Nachr. 140 (1989), 299–319. (1989) Zbl0708.46025MR1015402DOI10.1002/mana.19891400121
  23. Moricz, F., 10.1007/BF01903811, Acta Math. Hungar. 57 (1991), 129–136. (1991) MR1128849DOI10.1007/BF01903811
  24. Moricz, F., Rhoades, B.E., 10.1017/S0305004100065464, Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294. (1988) MR0948914DOI10.1017/S0305004100065464
  25. Nakano, H., Modular sequence spaces, Proc. Japan Acad. Ser. A Math. Sci. 27 (1951), 508–512. (1951) MR0047929
  26. Raj, K., Sharma, A.K., Sharma, S.K., A sequence space defined by Musielak-Orlicz functions, Int. J. Pure Appl. Math. 67 (2011), 472–484. (2011) MR2814723
  27. Raj, K., Sharma, S.K., Sharma, A.K., Some difference sequence spaces in n -normed spaces defined by Musielak-Orlicz function, Armen. J. math. 3 (2010), 127–141. (2010) MR2792497
  28. Raj, K., Sharma, S.K., Sharma, A.K., Some new sequence spaces defined by a sequence of modulus functions in n -normed spaces, Int. J. Math. Sci. Engg. Appl. 5 (2011), 395–403. (2011) MR2797897
  29. Savaş, E., On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl. (2010), 8 pages, Article ID 482392. (2010) Zbl1213.46009MR2721579
  30. Simons, S., The sequence spaces l ( p v ) and m ( p v ) , Proc. Japan Acad. 27 (1951), 508–512. (1951) 
  31. Tripathy, B.C., Statistically convergent double sequences, Tamkang J. Math. 34 (2003), 231–237. (2003) Zbl1040.40001MR2001918
  32. Tripathy, B.C., Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math. 30 (2004), 431–446. (2004) MR2106062
  33. Tripathy, B.C., Altin, Y., Et, M., 10.2478/s12175-008-0077-0, Math. Slovaca 58 (2008), 315–324. (2008) MR2399244DOI10.2478/s12175-008-0077-0
  34. Tripathy, B.C., Dutta, H., On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δ m n statistical convergence, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 417–430. (2012) MR2928432
  35. Tripathy, B.C., Esi, A., Tripathy, B.K., On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31 (3) (2005), 333–340. (2005) Zbl1093.46507MR2167543
  36. Wilansky, A., Summability through functional analysis, North-Holland Mathematics Studies, vol. 85, Amsterdam - New York - Oxford: North-Holland, 1984. (1984) Zbl0531.40008MR0738632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.