On curves and jets of curves on supermanifolds

Andrew James Bruce

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 2, page 115-130
  • ISSN: 0044-8753

Abstract

top
In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.

How to cite

top

Bruce, Andrew James. "On curves and jets of curves on supermanifolds." Archivum Mathematicum 050.2 (2014): 115-130. <http://eudml.org/doc/261205>.

@article{Bruce2014,
abstract = {In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {supermanifolds; curves; jets; higher order tangent bundles; supermanifolds; curves; jets; higher-order tangent bundles},
language = {eng},
number = {2},
pages = {115-130},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On curves and jets of curves on supermanifolds},
url = {http://eudml.org/doc/261205},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Bruce, Andrew James
TI - On curves and jets of curves on supermanifolds
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 2
SP - 115
EP - 130
AB - In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.
LA - eng
KW - supermanifolds; curves; jets; higher order tangent bundles; supermanifolds; curves; jets; higher-order tangent bundles
UR - http://eudml.org/doc/261205
ER -

References

top
  1. Alldridge, A., A convenient category of supermanifolds, arXiv:1109.3161 [math.DG] 2011. 
  2. Cariñena, J.F., Figueroa, H., 10.1023/A:1005870025318, Acta Appl. Math. 51 (1998), 25–58. (1998) Zbl0999.70018MR1609857DOI10.1023/A:1005870025318
  3. Carmeli, C., Caston, L., Fioresi, R., Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society, 2011. (2011) Zbl1226.58003MR2840967
  4. Deligne, P., Morgan, J.W., Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. (1999) Zbl1170.58302MR1701597
  5. DeWitt, B., Supermanifolds, Cambridge Monogr. Math. Phys., Cambridge University Press, 1984. (1984) Zbl0551.53002MR0778559
  6. di Bruno, F. Faà, Sullo sviluppo delle Funzioni, Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480, (in Italian). (1855) 
  7. Dumitrescu, F., 10.2140/pjm.2008.236.307, Pacific J. Math. 236 (2008), 307–332. (2008) Zbl1155.58001MR2407109DOI10.2140/pjm.2008.236.307
  8. Garnier, S., Wurzbacher, T., 10.1016/j.geomphys.2012.02.002, J. Geom. Phys. 62 (2012), 1489–1508. (2012) Zbl1242.53046MR2911220DOI10.1016/j.geomphys.2012.02.002
  9. Goertsches, O., Riemannian supergeometry, Math. Z. 260 (2008), no. 3, 557–593. (2008) Zbl1154.58001MR2434470
  10. Grabowski, J., Rotkiewicz, M., 10.1016/j.geomphys.2011.09.004, J. Geom. Phys. 62 (2011), 21–36. (2011) MR2854191DOI10.1016/j.geomphys.2011.09.004
  11. Hélein, F., An introduction to supermanifolds and supersymmetry, Systèmes intégrables et théorie des champs quantiques (Baird, P., Hélein, F., Kouneiher, J., Pedit, F., Roubtsov, V., eds.), Hermann, 2009, pp. 103–157. (2009) 
  12. Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer–Verlag, 1993, http://www.emis.de/monographs/KSM/index.html. (1993) MR1202431
  13. Lane, S. Mac, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer–Verlag, New York, 1998, Second Edition. (1998) MR1712872
  14. Manin, Y., Gauge Field Theory and Complex Geometry, Springer, 1997, Second Edition. (1997) Zbl0884.53002MR1632008
  15. Rogers, A., 10.1063/1.524585, J. Math. Phys. 21 (1980), 1352–1365. (1980) Zbl0447.58003MR0574696DOI10.1063/1.524585
  16. Rogers, A., Supermanifolds: theory and applications, World Scientific, 2007. (2007) Zbl1135.58004MR2320438
  17. Shvarts, A.S., On the definition of superspace, Teoret. Mat. Fiz. 60 (1984), no. 1, 37–42. (1984) Zbl0575.58005MR0760438
  18. Van Proeyen, A., Superconformal symmetry and higher-derivative Lagrangians, Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity, Frascati, 2013, arXiv:1306.2169 [hep-th]. (2013) 
  19. Varadarajan, V.S., Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes, vol. 11, Providence, RI: American Mathematical Society, 2004. (2004) Zbl1142.58009MR2069561
  20. Voronov, A.A., Maps of supermanifolds, Teoret. Mat. Fiz. 60 (1984), no. 1, 43–48, (Russian). (1984) MR0760439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.