The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in
Derya Sağlam; Özgür Boyacıoğlu Kalkan
Matematički Vesnik (2013)
- Volume: 65, Issue: 252, page 242-249
- ISSN: 0025-5165
Access Full Article
topHow to cite
topDerya Sağlam, and Özgür Boyacıoğlu Kalkan. "The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$." Matematički Vesnik 65.252 (2013): 242-249. <http://eudml.org/doc/261249>.
@article{DeryaSağlam2013,
author = {Derya Sağlam, Özgür Boyacıoğlu Kalkan},
journal = {Matematički Vesnik},
keywords = {Euler theorem},
language = {eng},
number = {252},
pages = {242-249},
publisher = {Društvo matematičara Srbije},
title = {The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$},
url = {http://eudml.org/doc/261249},
volume = {65},
year = {2013},
}
TY - JOUR
AU - Derya Sağlam
AU - Özgür Boyacıoğlu Kalkan
TI - The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$
JO - Matematički Vesnik
PY - 2013
PB - Društvo matematičara Srbije
VL - 65
IS - 252
SP - 242
EP - 249
LA - eng
KW - Euler theorem
UR - http://eudml.org/doc/261249
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.