# The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in ${E}_{1}^{3}$

Derya Sağlam; Özgür Boyacıoğlu Kalkan

Matematički Vesnik (2013)

- Volume: 65, Issue: 252, page 242-249
- ISSN: 0025-5165

## Access Full Article

top## How to cite

topDerya Sağlam, and Özgür Boyacıoğlu Kalkan. "The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$." Matematički Vesnik 65.252 (2013): 242-249. <http://eudml.org/doc/261249>.

@article{DeryaSağlam2013,

author = {Derya Sağlam, Özgür Boyacıoğlu Kalkan},

journal = {Matematički Vesnik},

keywords = {Euler theorem},

language = {eng},

number = {252},

pages = {242-249},

publisher = {Društvo matematičara Srbije},

title = {The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$},

url = {http://eudml.org/doc/261249},

volume = {65},

year = {2013},

}

TY - JOUR

AU - Derya Sağlam

AU - Özgür Boyacıoğlu Kalkan

TI - The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in $E_1^3$

JO - Matematički Vesnik

PY - 2013

PB - Društvo matematičara Srbije

VL - 65

IS - 252

SP - 242

EP - 249

LA - eng

KW - Euler theorem

UR - http://eudml.org/doc/261249

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.