Semicontinuous integrands as jointly measurable maps
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 2, page 189-193
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCarbonell-Nicolau, Oriol. "Semicontinuous integrands as jointly measurable maps." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 189-193. <http://eudml.org/doc/261854>.
@article{Carbonell2014,
abstract = {Suppose that $(X,\mathcal \{A\})$ is a measurable space and $Y$ is a metrizable, Souslin space. Let $\mathcal \{A\}^u$ denote the universal completion of $\mathcal \{A\}$. For $x\in X$, let $\underline\{f\}(x,\cdot )$ be the lower semicontinuous hull of $f(x,\cdot )$. If $f:X\times Y\rightarrow \overline\{\mathbb \{R\}\}$ is $(\mathcal \{A\}^u\otimes \mathcal \{B\}(Y),\mathcal \{B\}(\overline\{\mathbb \{R\}\}))$-measurable, then $\underline\{f\}$ is $(\mathcal \{A\}^u\otimes \mathcal \{B\}(Y),\mathcal \{B\}(\overline\{\mathbb \{R\}\}))$-measurable.},
author = {Carbonell-Nicolau, Oriol},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand; lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand},
language = {eng},
number = {2},
pages = {189-193},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semicontinuous integrands as jointly measurable maps},
url = {http://eudml.org/doc/261854},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Carbonell-Nicolau, Oriol
TI - Semicontinuous integrands as jointly measurable maps
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 189
EP - 193
AB - Suppose that $(X,\mathcal {A})$ is a measurable space and $Y$ is a metrizable, Souslin space. Let $\mathcal {A}^u$ denote the universal completion of $\mathcal {A}$. For $x\in X$, let $\underline{f}(x,\cdot )$ be the lower semicontinuous hull of $f(x,\cdot )$. If $f:X\times Y\rightarrow \overline{\mathbb {R}}$ is $(\mathcal {A}^u\otimes \mathcal {B}(Y),\mathcal {B}(\overline{\mathbb {R}}))$-measurable, then $\underline{f}$ is $(\mathcal {A}^u\otimes \mathcal {B}(Y),\mathcal {B}(\overline{\mathbb {R}}))$-measurable.
LA - eng
KW - lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand; lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand
UR - http://eudml.org/doc/261854
ER -
References
top- Balder E.J., 10.1137/0322035, SIAM J. Control Optim. 22 (1984), 570–598. Zbl0549.49005MR0747970DOI10.1137/0322035
- Balder E.J., 10.1287/moor.13.2.265, Math. Oper. Res. 13 (1988), 265–276. Zbl0658.90104MR0942618DOI10.1287/moor.13.2.265
- Balder E.J., 10.1287/moor.26.3.494.10581, Math. Oper. Res. 26 (2001), 494–518. Zbl1073.60500MR1849882DOI10.1287/moor.26.3.494.10581
- Carbonell-Nicolau O., McLean R.P., On the existence of Nash equilibrium in Bayesian games, mimeograph, 2013.
- Cohn D.L., Measure Theory, Second edition, Birkhäuser/Springer, New York, 2013. Zbl0860.28001MR3098996
- Sainte-Beuve M.-F., 10.1016/0022-1236(74)90008-1, J. Functional Analysis 17 (1974), 112–129. Zbl0286.28005MR0374364DOI10.1016/0022-1236(74)90008-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.