The fixed point property in a Banach space isomorphic to
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 2, page 195-202
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPoulios, Costas. "The fixed point property in a Banach space isomorphic to $c_0$." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 195-202. <http://eudml.org/doc/261856>.
@article{Poulios2014,
abstract = {We consider a Banach space, which comes naturally from $c_0$ and it appears in the literature, and we prove that this space has the fixed point property for non-expansive mappings defined on weakly compact, convex sets.},
author = {Poulios, Costas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-expansive mappings; fixed point property; Banach spaces isomorphic to $c_0$; fixed point property; nonexpansive mappings; weakly compact sets; Banach-Mazur distance; Banach spaces isomorphic to },
language = {eng},
number = {2},
pages = {195-202},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The fixed point property in a Banach space isomorphic to $c_0$},
url = {http://eudml.org/doc/261856},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Poulios, Costas
TI - The fixed point property in a Banach space isomorphic to $c_0$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 195
EP - 202
AB - We consider a Banach space, which comes naturally from $c_0$ and it appears in the literature, and we prove that this space has the fixed point property for non-expansive mappings defined on weakly compact, convex sets.
LA - eng
KW - non-expansive mappings; fixed point property; Banach spaces isomorphic to $c_0$; fixed point property; nonexpansive mappings; weakly compact sets; Banach-Mazur distance; Banach spaces isomorphic to
UR - http://eudml.org/doc/261856
ER -
References
top- Alspach D., 10.1090/S0002-9939-1981-0612733-0, Proc. Amer. Math. Soc. 82 (1981), 423–424. Zbl0468.47036MR0612733DOI10.1090/S0002-9939-1981-0612733-0
- Argyros S.A., Deliyanni I., Tolias A.G., 10.1007/s11856-011-0004-x, Israel J. Math. 181 (2011), 65–110. Zbl1219.46013MR2773038DOI10.1007/s11856-011-0004-x
- Browder F.E., 10.1073/pnas.54.4.1041, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR0187120DOI10.1073/pnas.54.4.1041
- Elton J., Lin P., Odell E., Szarek S., 10.1090/conm/018/728595, Contemporary Math. 18 (1983), 87–119. Zbl0528.47040MR0728595DOI10.1090/conm/018/728595
- Hagler J., A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289–308. Zbl0387.46015MR0442651
- Karlovitz L.A., 10.2140/pjm.1976.66.153, Pacific J. Math. 66 (1976), 153–159. MR0435951DOI10.2140/pjm.1976.66.153
- Kirk W.A., 10.2307/2313345, Amer. Math. Monthly 72 (1965), 1004–1006. Zbl0141.32402MR0189009DOI10.2307/2313345
- Maurey B., Points fixes des contractions sur un convexe forme de , Seminaire d' Analyse Fonctionelle 80–81, Ecole Polytechnique, Palaiseau, 1981. MR0659309
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.