Dihedral-like constructions of automorphic loops
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 3, page 269-284
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAboras, Mouna. "Dihedral-like constructions of automorphic loops." Commentationes Mathematicae Universitatis Carolinae 55.3 (2014): 269-284. <http://eudml.org/doc/261864>.
@article{Aboras2014,
abstract = {Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\ge 1$ and $\alpha \in \operatorname\{Aut\}(G)$, let $\operatorname\{Dih\} (m,G,\alpha )$ be defined on $\mathbb \{Z\}_m\times G$ by \begin\{equation*\} (i,u)(j,v) = (i\oplus j,\,((-1)^\{j\}u + v)\alpha ^\{ij\}). \end\{equation*\}
The resulting loop is automorphic if and only if $m=2$ or ($\alpha ^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.},
author = {Aboras, Mouna},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop; dihedral automorphic loops; semidirect extensions; inner mapping groups; multiplication groups; nuclei; commutant; center; commutators; associator subloop; derived subloop},
language = {eng},
number = {3},
pages = {269-284},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Dihedral-like constructions of automorphic loops},
url = {http://eudml.org/doc/261864},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Aboras, Mouna
TI - Dihedral-like constructions of automorphic loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 3
SP - 269
EP - 284
AB - Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\ge 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb {Z}_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha ^{ij}). \end{equation*}
The resulting loop is automorphic if and only if $m=2$ or ($\alpha ^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
LA - eng
KW - dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop; dihedral automorphic loops; semidirect extensions; inner mapping groups; multiplication groups; nuclei; commutant; center; commutators; associator subloop; derived subloop
UR - http://eudml.org/doc/261864
ER -
References
top- Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P., The structure of automorphic loops, to appear in Transactions of the American Mathematical Society. MR2302693
- Bruck R.H., A Survey of Binary Systems, Springer, 1971. Zbl0141.01401MR0093552
- Bruck R.H., Paige L.J., 10.2307/1969612, Ann. of Math. 2 63 (1956), 308–323. Zbl0074.01701MR0076779DOI10.2307/1969612
- Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., 10.1112/S1461157010000173, LMS J. Comut. Math. 14 (2011), 200–213. Zbl1225.20052MR2831230DOI10.1112/S1461157010000173
- Jedlička P., Kinyon M.K., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
- Jedlička P., Kinyon M.K., Vojtěchovský P., 10.1080/00927870903200877, Comm. Algebra 38 (2010), no. 9, 3243–3267. Zbl1209.20069MR2724218DOI10.1080/00927870903200877
- Aboras M., Dihedral-like constructions of automorphic loops, Thesis, in preparation.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.