About stability of risk-seeking optimal stopping
Raúl Montes-de-Oca; Elena Zaitseva
Kybernetika (2014)
- Volume: 50, Issue: 3, page 378-392
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMontes-de-Oca, Raúl, and Zaitseva, Elena. "About stability of risk-seeking optimal stopping." Kybernetika 50.3 (2014): 378-392. <http://eudml.org/doc/261895>.
@article{Montes2014,
abstract = {We offer the quantitative estimation of stability of risk-sensitive cost optimization in the problem of optimal stopping of Markov chain on a Borel space $X$. It is supposed that the transition probability $p(\cdot |x)$, $x\in X$ is approximated by the transition probability $\widetilde\{p\}(\cdot |x)$, $x\in X$, and that the stopping rule $\widetilde\{f\}_*$ , which is optimal for the process with the transition probability $\widetilde\{p\}$ is applied to the process with the transition probability $p$. We give an upper bound (expressed in term of the total variation distance: $\sup _\{x\in X\}\Vert p(\cdot |x)-\widetilde\{p\}(\cdot |x)\Vert )$ for an additional cost paid for using the rule $\widetilde\{f\}_*$ instead of the (unknown) stopping rule $f_*$ optimal for $p$.},
author = {Montes-de-Oca, Raúl, Zaitseva, Elena},
journal = {Kybernetika},
keywords = {discrete-time Markov process; risk-seeking expected total cost; optimal stopping rule; stability index; total variation metric; discrete-time Markov process; risk-seeking expected total cost; optimal stopping rule; stability index; total variation metric},
language = {eng},
number = {3},
pages = {378-392},
publisher = {Institute of Information Theory and Automation AS CR},
title = {About stability of risk-seeking optimal stopping},
url = {http://eudml.org/doc/261895},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Montes-de-Oca, Raúl
AU - Zaitseva, Elena
TI - About stability of risk-seeking optimal stopping
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 3
SP - 378
EP - 392
AB - We offer the quantitative estimation of stability of risk-sensitive cost optimization in the problem of optimal stopping of Markov chain on a Borel space $X$. It is supposed that the transition probability $p(\cdot |x)$, $x\in X$ is approximated by the transition probability $\widetilde{p}(\cdot |x)$, $x\in X$, and that the stopping rule $\widetilde{f}_*$ , which is optimal for the process with the transition probability $\widetilde{p}$ is applied to the process with the transition probability $p$. We give an upper bound (expressed in term of the total variation distance: $\sup _{x\in X}\Vert p(\cdot |x)-\widetilde{p}(\cdot |x)\Vert )$ for an additional cost paid for using the rule $\widetilde{f}_*$ instead of the (unknown) stopping rule $f_*$ optimal for $p$.
LA - eng
KW - discrete-time Markov process; risk-seeking expected total cost; optimal stopping rule; stability index; total variation metric; discrete-time Markov process; risk-seeking expected total cost; optimal stopping rule; stability index; total variation metric
UR - http://eudml.org/doc/261895
ER -
References
top- Avila-Godoy, G., Fernández-Gaucherand, E., Controlled Markov chains with exponential risk-sensitive criteria: modularity, structured policies and applications., In: Decision and Control 1998. Proc. 37th IEEE Conference. Vol. 1, IEEE, pp. 778-783.
- Bäuerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer-Verlag, Berlin 2011. Zbl1236.90004MR2808878
- Borkar, V. S., Meyn, S. P., 10.1287/moor.27.1.192.334, Math. Oper. Res. 27 (2002), 192-209. Zbl1082.90577MR1886226DOI10.1287/moor.27.1.192.334
- Cavazos-Cadena, R., 10.1007/s00186-009-0285-6, Math. Methods Oper. Res. 71 (2010), 47-84. Zbl1189.93144MR2595908DOI10.1007/s00186-009-0285-6
- Cavazos-Cadena, R., Fernández-Gaucherand, E., Controlled Markov chains with risk-sensitive criteria: Average costs, optimality equations, and optimal solutions., Math. Methods Oper. Res. 49 (1999), 299-324. MR1687362
- Cavazos-Cadena, R., Montes-de-Oca, R., Optimal stationary policies in risk-sensitive dynamic programs with finite state space and nonegative rewards., Appl. Math. 27 (2000), 167-185. MR1768711
- Dijk, N. M. Van, Sladký, K., 10.1023/A:1021749829267, J. Optim. Theory Appl. 101 (1999), 449-474. MR1684679DOI10.1023/A:1021749829267
- Devroye, L., Györfy, L., Nonparametric Density Estimation: The View., John Wiley, New York 1986.
- Dynkin, E. B., Yushkevich, A. A., Controlled Markov Processes., Springer Verlag, New York 1979. MR0554083
- Gordienko, E. I., Yushkevich, A. A., Stability estimates in the problem of average optimal switching of a Markov chain., Math. Methods Oper. Res. 57 (2003), 345-365. Zbl1116.90401MR1990916
- Gordienko, E. I., Lemus-Rodríguez, E., Montes-de-Oca, R., 10.1007/s00186-008-0229-6, Math. Methods Oper. Res. 70 (2009), 13-33. Zbl1176.60062MR2529423DOI10.1007/s00186-008-0229-6
- Gordienko, E. I., Salem, F., 10.1016/S0167-6911(97)00077-7, Syst. Control Lett. 33 (1998), 125-130. MR1607814DOI10.1016/S0167-6911(97)00077-7
- Hernández-Lerma, O., Lasserre, J. B., Further Topics on Discrete-time Markov Control Processes., Springer-Verlag, New York 1999. Zbl0928.93002MR1697198
- Jaśkiewicz, A., 10.1214/105051606000000790, Ann. Appl. Probab. 17 (2007), 654-675. Zbl1128.93056MR2308338DOI10.1214/105051606000000790
- Kartashov, N. V., Strong Stable Markov Chains., VSP, Utrecht 1996. Zbl0874.60082MR1451375
- Marcus, S. I., Fernández-Gaucherand, E., Hernández-Hernández, D. E., Coraluppi, S., Fard, P., Risk sensitive Markov decision processes., Progress in System and Control Theory 22 (1997), 263-280. MR1427787
- Masi, G. B. Di, Stettner, L., 10.1016/S0167-6911(99)00118-8, Systems Control Lett. 40 (2000), 15-20. Zbl0977.93083MR1829070DOI10.1016/S0167-6911(99)00118-8
- Meyn, S. P., Tweedie, R. L., Markov Chains and Stochastic Stability., Springer-Verlag, London 1993. Zbl1165.60001MR1287609
- Montes-de-Oca, R., Salem-Silva, F., Estimates for perturbations of an average Markov decision processes with a minimal state and upper bounded stochastically ordered Markov chains., Kybernetika 41 (2005), 757-772. MR2193864
- Muciek, B. K., 10.1239/jap/1025131424, J. Appl. Probab. 39 (2002), 261-270. MR1908943DOI10.1239/jap/1025131424
- Shiryaev, A. N., Optimal Stopping Rules., Springer-Verlag, New York 1978. Zbl1138.60008MR2374974
- Shiryaev, A. N., Essential of Stochastic Finance. Facts, Models, Theory., World Scientific Publishing Co., Inc., River Edge, N. J. 1999. MR1695318
- Sladký, K., Bounds on discrete dynamic programming recursions I., Kybernetika 16 (1980), 526-547. Zbl0454.90085MR0607292
- Zaitseva, E., Stability estimating in optimal stopping problem., Kybernetika 44 (2008), 400-415. Zbl1154.60326MR2436040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.