Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 137-144
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topTakahashi, Futoshi. "Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions." Mathematica Bohemica 139.2 (2014): 137-144. <http://eudml.org/doc/261905>.
@article{Takahashi2014,
abstract = {We study the semilinear problem with the boundary reaction \[ -\Delta u + u = 0 \quad \text\{in\} \ \Omega , \qquad \frac\{\partial u\}\{\partial \nu \} = \lambda f(u) \quad \text\{on\} \ \partial \Omega , \]
where $\Omega \subset \mathbb \{R\}^N$, $N \ge 2$, is a smooth bounded domain, $f\colon [0, \infty ) \rightarrow (0, \infty )$ is a smooth, strictly positive, convex, increasing function which is superlinear at $\infty $, and $\lambda >0$ is a parameter. It is known that there exists an extremal parameter $\lambda ^* > 0$ such that a classical minimal solution exists for $\lambda < \lambda ^*$, and there is no solution for $\lambda > \lambda ^*$. Moreover, there is a unique weak solution $u^*$ corresponding to the parameter $\lambda = \lambda ^*$. In this paper, we continue to study the spectral properties of $u^*$ and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.},
author = {Takahashi, Futoshi},
journal = {Mathematica Bohemica},
keywords = {continuum spectrum; extremal solution; boundary reaction; continuum spectrum; extremal solution; boundary reaction},
language = {eng},
number = {2},
pages = {137-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions},
url = {http://eudml.org/doc/261905},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Takahashi, Futoshi
TI - Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 137
EP - 144
AB - We study the semilinear problem with the boundary reaction \[ -\Delta u + u = 0 \quad \text{in} \ \Omega , \qquad \frac{\partial u}{\partial \nu } = \lambda f(u) \quad \text{on} \ \partial \Omega , \]
where $\Omega \subset \mathbb {R}^N$, $N \ge 2$, is a smooth bounded domain, $f\colon [0, \infty ) \rightarrow (0, \infty )$ is a smooth, strictly positive, convex, increasing function which is superlinear at $\infty $, and $\lambda >0$ is a parameter. It is known that there exists an extremal parameter $\lambda ^* > 0$ such that a classical minimal solution exists for $\lambda < \lambda ^*$, and there is no solution for $\lambda > \lambda ^*$. Moreover, there is a unique weak solution $u^*$ corresponding to the parameter $\lambda = \lambda ^*$. In this paper, we continue to study the spectral properties of $u^*$ and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.
LA - eng
KW - continuum spectrum; extremal solution; boundary reaction; continuum spectrum; extremal solution; boundary reaction
UR - http://eudml.org/doc/261905
ER -
References
top- Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A., Blow up for revisited, Adv. Differ. Equ. 1 73-90 (1996). (1996) MR1357955
- Brezis, H., Vázquez, J. L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madr. 10 443-469 (1997). (1997) Zbl0894.35038MR1605678
- Cabré, X., Martel, Y., 10.1006/jfan.1997.3171, J. Funct. Anal. 156 30-56 (1998). (1998) Zbl0908.35044MR1632972DOI10.1006/jfan.1997.3171
- Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear Neumann boundary conditions, Adv. Differ. Equ. 1 91-110 (1996). (1996) Zbl0839.35042MR1357956
- Dávila, J., Singular solutions of semi-linear elliptic problems, Handbook of Differential Equations: Stationary Partial Differential Equations Elsevier, Amsterdam 83-176 (2008). (2008) Zbl1191.35131MR2569324
- Dávila, J., Dupaigne, L., Montenegro, M., 10.3934/cpaa.2008.7.795, Commun. Pure Appl. Anal. 7 795-817 (2008). (2008) Zbl1156.35039MR2393398DOI10.3934/cpaa.2008.7.795
- Dupaigne, L., Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall Monographs and Surveys in Pure and Applied Mathematics 143 CRC Press, Boca Raton (2011). (2011) Zbl1228.35004MR2779463
- Martel, Y., Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 161-168 (1997). (1997) Zbl0884.35037MR1688823
- Quittner, P., Reichel, W., 10.1007/s00526-007-0155-0, Calc. Var. Partial Differ. Equ. 32 429-452 (2008). (2008) Zbl1147.35042MR2402918DOI10.1007/s00526-007-0155-0
- Takahashi, F., 10.1142/S0219199714500163, Commun. Contemp. Math. 27 pages, DOI:10.1142/S0219199714500163 (2014). (2014) MR3325039DOI10.1142/S0219199714500163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.