Cauchy problem for the complex Ginzburg-Landau type Equation with L p -initial data

Daisuke Shimotsuma; Tomomi Yokota; Kentarou Yoshii

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 353-361
  • ISSN: 0862-7959

Abstract

top
This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation u t - ( λ + i α ) Δ u + ( κ + i β ) | u | q - 1 u - γ u = 0 in N × ( 0 , ) with L p -initial data u 0 in the subcritical case ( 1 q < 1 + 2 p / N ), where u is a complex-valued unknown function, α , β , γ , κ , λ > 0 , p > 1 , i = - 1 and N . The proof is based on the L p - L q estimates of the linear semigroup { exp ( t ( λ + i α ) Δ ) } and usual fixed-point argument.

How to cite

top

Shimotsuma, Daisuke, Yokota, Tomomi, and Yoshii, Kentarou. "Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data." Mathematica Bohemica 139.2 (2014): 353-361. <http://eudml.org/doc/261909>.

@article{Shimotsuma2014,
abstract = {This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation \[ \dfrac\{\partial u\}\{\partial t\} -(\lambda +\{\rm i\} \alpha )\Delta u +(\kappa +\{\rm i\} \beta )|u|^\{q-1\}u-\gamma u=0 \] in $\mathbb \{R\}^\{N\}\times (0,\infty )$ with $L^\{p\}$-initial data $u_\{0\}$ in the subcritical case ($1\le q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb \{R\}$, $\lambda >0$, $p>1$, $\{\rm i\} =\sqrt\{-1\}$ and $N\in \mathbb \{N\}$. The proof is based on the $L^\{p\}$-$L^\{q\}$ estimates of the linear semigroup $\lbrace \exp (t(\lambda +\{\rm i\} \alpha )\Delta )\rbrace $ and usual fixed-point argument.},
author = {Shimotsuma, Daisuke, Yokota, Tomomi, Yoshii, Kentarou},
journal = {Mathematica Bohemica},
keywords = {local existence; complex Ginzburg-Landau equation; local existence; complex Ginzburg-Landau equation},
language = {eng},
number = {2},
pages = {353-361},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cauchy problem for the complex Ginzburg-Landau type Equation with $L^\{p\}$-initial data},
url = {http://eudml.org/doc/261909},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Shimotsuma, Daisuke
AU - Yokota, Tomomi
AU - Yoshii, Kentarou
TI - Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 353
EP - 361
AB - This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation \[ \dfrac{\partial u}{\partial t} -(\lambda +{\rm i} \alpha )\Delta u +(\kappa +{\rm i} \beta )|u|^{q-1}u-\gamma u=0 \] in $\mathbb {R}^{N}\times (0,\infty )$ with $L^{p}$-initial data $u_{0}$ in the subcritical case ($1\le q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb {R}$, $\lambda >0$, $p>1$, ${\rm i} =\sqrt{-1}$ and $N\in \mathbb {N}$. The proof is based on the $L^{p}$-$L^{q}$ estimates of the linear semigroup $\lbrace \exp (t(\lambda +{\rm i} \alpha )\Delta )\rbrace $ and usual fixed-point argument.
LA - eng
KW - local existence; complex Ginzburg-Landau equation; local existence; complex Ginzburg-Landau equation
UR - http://eudml.org/doc/261909
ER -

References

top
  1. Clément, P., Okazawa, N., Sobajima, M., Yokota, T., 10.1016/j.jde.2012.05.002, J. Differ. Equations 253 (2012), 1250-1263. (2012) Zbl1248.35203MR2925912DOI10.1016/j.jde.2012.05.002
  2. Giga, M., Giga, Y., Saal, J., Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions, Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010). (2010) Zbl1215.35001MR2656972
  3. Ginibre, J., Velo, G., 10.1016/0167-2789(96)00055-3, Physica D 95 (1996), 191-228. (1996) Zbl0889.35045MR1406282DOI10.1016/0167-2789(96)00055-3
  4. Ginibre, J., Velo, G., 10.1007/s002200050129, Commun. Math. Phys. 187 (1997), 45-79. (1997) Zbl0889.35046MR1463822DOI10.1007/s002200050129
  5. Kobayashi, Y., Matsumoto, T., Tanaka, N., 10.1016/j.jmaa.2006.08.028, J. Math. Anal. Appl. 330 (2007), 1042-1067. (2007) Zbl1123.34044MR2308426DOI10.1016/j.jmaa.2006.08.028
  6. Levermore, C. D., Oliver, M., The complex Ginzburg-Landau equation as a model problem, Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996). (1996) Zbl0845.35003MR1363028
  7. Matsumoto, T., Tanaka, N., 10.1016/j.na.2007.10.035, Nonlinear Anal. 69 (2008), 4025-4054. (2008) Zbl1169.47045MR2463352DOI10.1016/j.na.2007.10.035
  8. Matsumoto, T., Tanaka, N., Well-posedness for the complex Ginzburg-Landau equations, Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakktosho, Tokyo (2010), 429-442. (2010) Zbl1208.35143MR2668292
  9. Okazawa, N., 10.1201/9781420011135.ch14, Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288. (2006) Zbl1110.35030MR2275982DOI10.1201/9781420011135.ch14
  10. Okazawa, N., Yokota, T., 10.1006/jmaa.2001.7770, J. Math. Anal. Appl. 267 (2002), 247-263. (2002) Zbl0995.35029MR1886827DOI10.1006/jmaa.2001.7770
  11. Okazawa, N., Yokota, T., 10.2969/jmsj/1191593952, J. Math. Soc. Japan 54 (2002), 1-19. (2002) Zbl1045.35080MR1864925DOI10.2969/jmsj/1191593952
  12. Okazawa, N., Yokota, T., Non-contraction semigroups generated by the complex Ginz-burg-Landau equation, Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakktosho, Tokyo (2004), 490-504. (2004) MR2087493
  13. Okazawa, N., Yokota, T., 10.3934/dcds.2010.28.311, Discrete Contin. Dyn. Syst. 28 (2010), 311-341. (2010) Zbl1198.47089MR2629484DOI10.3934/dcds.2010.28.311
  14. Yang, Y., 10.1112/blms/22.2.167, Bull. Lond. Math. Soc. 22 (1990), 167-170. (1990) Zbl0663.35095MR1045289DOI10.1112/blms/22.2.167
  15. Yokota, T., Okazawa, N., Smoothing effect for the complex Ginzburg-Landau equation (general case), Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316. (2006) MR2268800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.