Cauchy problem for the complex Ginzburg-Landau type Equation with -initial data
Daisuke Shimotsuma; Tomomi Yokota; Kentarou Yoshii
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 353-361
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topShimotsuma, Daisuke, Yokota, Tomomi, and Yoshii, Kentarou. "Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data." Mathematica Bohemica 139.2 (2014): 353-361. <http://eudml.org/doc/261909>.
@article{Shimotsuma2014,
abstract = {This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation \[ \dfrac\{\partial u\}\{\partial t\} -(\lambda +\{\rm i\} \alpha )\Delta u +(\kappa +\{\rm i\} \beta )|u|^\{q-1\}u-\gamma u=0 \]
in $\mathbb \{R\}^\{N\}\times (0,\infty )$ with $L^\{p\}$-initial data $u_\{0\}$ in the subcritical case ($1\le q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb \{R\}$, $\lambda >0$, $p>1$, $\{\rm i\} =\sqrt\{-1\}$ and $N\in \mathbb \{N\}$. The proof is based on the $L^\{p\}$-$L^\{q\}$ estimates of the linear semigroup $\lbrace \exp (t(\lambda +\{\rm i\} \alpha )\Delta )\rbrace $ and usual fixed-point argument.},
author = {Shimotsuma, Daisuke, Yokota, Tomomi, Yoshii, Kentarou},
journal = {Mathematica Bohemica},
keywords = {local existence; complex Ginzburg-Landau equation; local existence; complex Ginzburg-Landau equation},
language = {eng},
number = {2},
pages = {353-361},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cauchy problem for the complex Ginzburg-Landau type Equation with $L^\{p\}$-initial data},
url = {http://eudml.org/doc/261909},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Shimotsuma, Daisuke
AU - Yokota, Tomomi
AU - Yoshii, Kentarou
TI - Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 353
EP - 361
AB - This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation \[ \dfrac{\partial u}{\partial t} -(\lambda +{\rm i} \alpha )\Delta u +(\kappa +{\rm i} \beta )|u|^{q-1}u-\gamma u=0 \]
in $\mathbb {R}^{N}\times (0,\infty )$ with $L^{p}$-initial data $u_{0}$ in the subcritical case ($1\le q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb {R}$, $\lambda >0$, $p>1$, ${\rm i} =\sqrt{-1}$ and $N\in \mathbb {N}$. The proof is based on the $L^{p}$-$L^{q}$ estimates of the linear semigroup $\lbrace \exp (t(\lambda +{\rm i} \alpha )\Delta )\rbrace $ and usual fixed-point argument.
LA - eng
KW - local existence; complex Ginzburg-Landau equation; local existence; complex Ginzburg-Landau equation
UR - http://eudml.org/doc/261909
ER -
References
top- Clément, P., Okazawa, N., Sobajima, M., Yokota, T., 10.1016/j.jde.2012.05.002, J. Differ. Equations 253 (2012), 1250-1263. (2012) Zbl1248.35203MR2925912DOI10.1016/j.jde.2012.05.002
- Giga, M., Giga, Y., Saal, J., Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions, Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010). (2010) Zbl1215.35001MR2656972
- Ginibre, J., Velo, G., 10.1016/0167-2789(96)00055-3, Physica D 95 (1996), 191-228. (1996) Zbl0889.35045MR1406282DOI10.1016/0167-2789(96)00055-3
- Ginibre, J., Velo, G., 10.1007/s002200050129, Commun. Math. Phys. 187 (1997), 45-79. (1997) Zbl0889.35046MR1463822DOI10.1007/s002200050129
- Kobayashi, Y., Matsumoto, T., Tanaka, N., 10.1016/j.jmaa.2006.08.028, J. Math. Anal. Appl. 330 (2007), 1042-1067. (2007) Zbl1123.34044MR2308426DOI10.1016/j.jmaa.2006.08.028
- Levermore, C. D., Oliver, M., The complex Ginzburg-Landau equation as a model problem, Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996). (1996) Zbl0845.35003MR1363028
- Matsumoto, T., Tanaka, N., 10.1016/j.na.2007.10.035, Nonlinear Anal. 69 (2008), 4025-4054. (2008) Zbl1169.47045MR2463352DOI10.1016/j.na.2007.10.035
- Matsumoto, T., Tanaka, N., Well-posedness for the complex Ginzburg-Landau equations, Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakktosho, Tokyo (2010), 429-442. (2010) Zbl1208.35143MR2668292
- Okazawa, N., 10.1201/9781420011135.ch14, Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288. (2006) Zbl1110.35030MR2275982DOI10.1201/9781420011135.ch14
- Okazawa, N., Yokota, T., 10.1006/jmaa.2001.7770, J. Math. Anal. Appl. 267 (2002), 247-263. (2002) Zbl0995.35029MR1886827DOI10.1006/jmaa.2001.7770
- Okazawa, N., Yokota, T., 10.2969/jmsj/1191593952, J. Math. Soc. Japan 54 (2002), 1-19. (2002) Zbl1045.35080MR1864925DOI10.2969/jmsj/1191593952
- Okazawa, N., Yokota, T., Non-contraction semigroups generated by the complex Ginz-burg-Landau equation, Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakktosho, Tokyo (2004), 490-504. (2004) MR2087493
- Okazawa, N., Yokota, T., 10.3934/dcds.2010.28.311, Discrete Contin. Dyn. Syst. 28 (2010), 311-341. (2010) Zbl1198.47089MR2629484DOI10.3934/dcds.2010.28.311
- Yang, Y., 10.1112/blms/22.2.167, Bull. Lond. Math. Soc. 22 (1990), 167-170. (1990) Zbl0663.35095MR1045289DOI10.1112/blms/22.2.167
- Yokota, T., Okazawa, N., Smoothing effect for the complex Ginzburg-Landau equation (general case), Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316. (2006) MR2268800
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.